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ABSTRACT 

 

In the search for alternative energy technologies, low temperature fuel cells continue to 

feature as technologies with the most promise for mass commercialization. Among the low 

temperature fuel cells, alkaline and proton exchange membrane fuel cells are the most popular. 

Alkaline fuel cells have typically been used for water generation as well as auxiliary power for 

space shuttles. Their bulkiness however makes them undesirable for other applications, especially 

in automobiles, where there is a great demand for alternative technologies to internal combustion 

engines. Proton exchange membrane fuel cells on the other hand possess numerous qualities 

including their compact size, high efficiency and versatility. Their mass implementation has 

however been delayed, because of cost among other reasons. Most of this cost is owed to the Pt/C 

catalyst that accounts for about half of the price of the PEM Fuel Cell. This catalyst is used to 

drive the sluggish oxygen reduction reaction that occurs at the cathode of the PEM Fuel Cell. 

To overcome this obstacle, which is to make PEM Fuel Cell technology more affordable, 

reducing the amount Pt has traditionally been the approach. Another approach has been to find 

new ideal catalyst-support combinations that increase the intrinsic activity of the supported 

material. One more strategy has been to find lower cost alternative materials to Pt through 

synthetic and kinetic manipulations to rival or exceed the current oxygen reduction reaction 

activity benchmark. 

To this end, Palladium has garnered significant interest as a monometallic entity. Its 

manipulation through synthetic chemistry to achieve different morphologies - which favor select 



 ix 

lattice planes - in turn promotes the oxygen reduction reaction to different degrees. In bimetallic 

or, in more recent times multimetallic frameworks, geometric and ligand effects can be used to 

form ideal compositions and morphologies that are synergistic for improved oxygen reduction 

reaction kinetics. 

In this dissertation, we have explored three different approaches to make contributions to 

the catalysis and electrocatalysis body of literature. In the first instance, we look at the influence 

of ligand effects through the active incorporation of a PVP capping agent on the stability of ~3nm 

Pt NPs. Washed (no capping agent) and unwashed (with capping agent) batches of NPs were 

evaluated via cyclic voltammogram analyses to evaluate differences there might be between them. 

It was found that the current density measurements for unwashed particle batches were higher. 

This increase in current density was attributed to the monodentate and bidentate ligand bonding 

from the PVP, which increased as a function of cycle number and plateaued when the PVP was 

completely decomposed. The complete decomposition of PVP during the CV experiment was 

estimated to occur around 200 cycles. 

The remaining portion of the dissertation explores the electrocatalytic properties of 

Palladium based NPs. The first instance, a monometallic study of Palladium cubes and dendrites 

was aimed at building on a recent publication on the enhanced ORR activity that was achieved 

with a PdPt bimetallic dendrite morphology. In our work, we sought to isolate the dendritic 

morphology properties of the monometallic Pd composition in order to understand what 

advantages could be achieved via this morphology. Pd cubes were used as a comparison, since 

they could be generated through the combination of a similar set of reagents simply by switching 

the order of addition. It was found that while there was no significant variation in the ORR 

activity as a function of morphology / shape, there was an interesting interaction between 
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hydrogen and the palladium NPs in the hydrogen oxidation region that varied as a function of 

shape. This led to further sorption and ethylene hydrogenation studies, which suggested that, the 

interaction between hydrogen and Pd depended on the environment. Within the electrochemical 

environment, the ECSA measured, suggested that hydrogen was being reversibly absorbed into 

the sub-surface octahedral sites of Pd. The higher ECSA for Pd cubes corroborated with higher 

sorption for Pd cubes as well. However ethylene hydrogenation showed that the fringes of the Pd 

dendrites provided additional sites for reaction, which in turn translated to higher conversion. 

Furthermore, through a Koutecky-Levich analysis, it was found out that the Pd dendrites while 

exhibiting slightly lower activity, favored the 4-electron oxygen reduction process more than the 

Pd cubes. 

In the last part of this dissertation we explored the electrocatalytic properties of Pd-based 

bimetallic NPs under different morphologies including nanocages and sub-10nm alloys. With the 

inclusion of Ag, it was found out, through Koutecky-Levich analysis that the 4-electron process 

was better observed under alkaline conditions using a 0.1M NaOH(aq) electrolyte solution instead 

of a 0.1M HClO4 (aq) for acidic media testing. It was found that, for PdAg nanocage morphologies, 

where the Pd galvanically replaced the Ag to form cages, the four-electron process was suited to 

thinner Pd shells. Indeed the average electron numbers measured for Ag nanocubes coated with a 

6nm shell was in agreement, within reason of literature values for bulk Ag. However, since the 

binding energy that both metals have for OH is so close, the potential for contributions to the 

ORR kinetics in alkaline media by Pd is a potential consideration. 
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CHAPTER 1:  INTRODUCTION TO LOW-TEMPERATURE FUEL CELL CATALYSIS 

 

 

1.1 The Need for Alternative Energy 

 

The continuing depletion of the world’s fossil fuel resources has been a driving factor for 

the development of alternative fuel sources and technologies. This pursuit however has also been 

motivated by the desire to reduce the emission of toxic as well as greenhouse gases into the 

atmosphere, which have increased considerably. As of April 2013, the level of CO2 recorded in 

the atmosphere was 398.35ppm - the highest value on record in human history and well on par to 

hit 400ppm (CO2, www.now.org) Furthermore, the rate at which atmospheric CO2 is increasing 

is more than 100% faster than it was during the industrial revolution and the highest ever 

recorded since the end of the last ice age [3]. Notwithstanding this tremendous consumption 

pattern, the growing human population and by inference its energy need is expected to continue 

to increase exponentially. This startling information suggests that at the current consumption rate 

and without a foreseeable decrease in the dependence on fossil fuels, the climate might be 

headed to a point of irreversible and substantial change.  

The increase in the emission of greenhouse gases, which has steadily progressed in the 

aftermath of major world milestones such as the industrial revolution, has not led to change the 

means by which energy is traditionally generated. Today, the use of crude oil and natural gas 

from coal or from other sources continues to dominate the world’s energy platform. However, 

the continued depletion of purported world proven reserves has triggered, in recent times, a 

financial incentive to move away from fossil fuels. This push is also informed by the desire by 
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some of the world’s largest economies, like the United States, to become independent [4] of 

foreign sources of crude oil, which in a large number of cases are found in conflict prone regions 

of the world.  It has been suggested that based on the United States Department Of Energy’s 

Energy Information Administration annual report of proved world reserves of energy resources, 

there maybe as little as 43 more years of crude oil left and 61 and 148 years of natural gas and 

coal respectively (information based on 2006 levels and flows, DOE EIA) production data.  

In light of these phenomena, the need to provide alternative energy technologies for many 

future generations to live comfortably is very important. Several alternative forms of technology, 

some proving to be more efficient and most proving to emit less greenhouse gases have been 

proposed. These include the use of photovoltaic (or solar) cells, which harness the sun’s energy, 

and convert it to electricity, and geothermal energy, which takes advantage of the thermal 

energy, stored deep in the earth’s crust. Hydroelectric, nuclear and wind-powered energy 

resources have also garnered some interest over the years. Still in more recent times, biofuels and 

fuel cells feature most prominently in the scientific and political discourse.  Thus there are 

several forms of alternative energy technologies that have been proposed. However, among all of 

the forms of alternative energy technologies mentioned above, fuel cells offer one of the best 

alternatives by virtue of their high efficiency, minimal greenhouse gas emission [5] and long 

term deployment.  

There has been resurgence in research interest revolving around fuel cells after they were 

first commercially employed for powering of space shuttles. Their use ensured that the shuttles 

generated auxiliary power, and water which could be used for human consumption. 
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1.2 Low Temperature Fuel Cells 

 There are generally six major types of fuel cell categories [1] as listed in Table 1. While 

their operation may adopt the same general mechanism, they vary based on variables such as the 

charge carrier, operating temperature and electrolyte solution. Currently, among the different 

types of fuel cells that have been listed here, PEMFCs, feature prominently in literature. Their 

small size and high efficiency makes them ideal candidates for automotive applications and 

replacement of internal combustion engines. In fact, the use of PEMFCs dates back to the first 

NASA space programs where they were used for energy generation and to provide the astronauts 

with clean drinking water. The Gemini program – as it was called - employed a 1kW fuel cell 

stack as an auxiliary power source. [6] This original fuel cell was however fundamentally 

flawed, due to the use of a polystyrene sulfonate (PSS) polymer membrane, which was not 

stable. As a result, the alkaline fuel cell (AFC)  (also indicated in Table 1) became the FC of 

choice.  In the late 1960s, Walter Grot of DuPont, would discover, what we know today as 

Nafion – replacing PSS - and this new component would dramatically improve the performance 

of PEMFCs.  Indeed, Ballard started using a modified PEMFC system incorporating the use of 

Nafion. With this modification, a four-fold increase in current density measurements was 

observed as a function of voltage.  [1, 7].  

 Nafion can be described as a copolymer consisting of tetrafluoroethylene (TFE or Teflon) 

and sulfonic acid (-SO3
-
H

+
) containing-perfluorinated vinyl ether. [9, 10] While it was originally 

studied for its use as a membrane separator of chloralkali cells used in production of chlorine and 

sodium hydroxide, it was its use as an essential component of the proton exchange membrane 

assembly that would bring it to fame. 
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Table 1 A summary of the most common fuel cell types and their properties (adapted from Carrette et. al [1]). The properties 

of PEM Fuel Cells make it ideal for Transportation as well as small-scale applications 

 

 Alkaline Proton 

exchange 

Membrane 

Direct 

Methanol 

Phosphoric 

Acid 

Molten 

Carbonate 

Solid Oxide 

Charge carrier in 

electrolyte 

 

OH
-
 H

+
 H

+
 H

+
 (CO3 )

2-
 O

2-
 

Operating 

Temperature 

(C) 

< 100 60 - 120 60 - 120 160 - 220 600 - 800 800 - 1000 

Anodic Rxn 

 

H2  +2OH
-
  

2H2O + 2e
-
 

H2  2H
+
 + 

2e
-
 

CH3OH
 
+ 

H2O  CO2 

+6H
+ 

+6e
-
 

H2  2H
+
 + 

2e 

H2
 
+ (CO3)

2- 

 H2O  + 

CO2 
 
+2e

-
 

H2  + O
2-

  

2H2O + 2e
-
 

Cathodic Rxn 

 

H2O + 2e
-
 

+0.5O2 2OH
-
 

0.5O2 

+2H
+
+2e  

H2O 

1.5O2 + 6H
+ 

+ 

6e
-
  3H2O 

0.5O2 

+2H
+
+2e  

H2O 

0.5O2 + CO2 

+ 2e  

(CO3)
-
 

0.5O2  +2e
-
 

 O
2-

 

Applications 

 

Transportation, Space, Military, Energy Storage 

Systems 

Stationary 

Heat & 

Power 

Stationary Heat & Power 

and Transportation 

Reliable Power 

 

5 – 150kW 5 – 250kW 5kW 50kW – 

1MW 

100kW – 

2MW 

100 – 

250kW 
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Figure 1 Molecular structure of Nafion® [8] 

 

 

  Ballard Power Systems started using a different membrane in their PEM fuel cells which 

gave about four times higher current densities at the same voltage and this discovery would 

launch a new field of research with stakeholders, such as Dow Chemicals and other research 

institutions and groups, heavily invested in it. [1, 7]. 

A typical PEMFC can be divided into three main constituent parts, i.e. the anode, the 

cathode and membrane assembly. Each component has a distinct function and together, they 

facilitate the generation of electricity from H2 and O2.  During this process, fuel, typically in the 

form of pure H2 (g), is admitted at the inlet (anode, eqn 1.1), with an outlet on the same side to let 

out excess H2 (g).  At the membrane assembly, protons selectively travel through a semi-

permeable membrane constituted of – among other components – Nafion 
®
,
 
a proton conductor 
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Figure 2 Illustrative operation of a generic low temperature fuel cell 

 

 

The respective electrons are ejected from the atoms and out of the cell through an 

electrical circuit to generate electricity and power. On the opposite end of the PEMFC, i.e. the 

cathode (eqn 1.2), the ejected electrons recombine with O2 (g) typically from the atmosphere and 

the protons from the MEA. This process results in the generation of water, H2 O (g) at a slightly 

elevated temperature (60 – 120°C).  

 

                                                (1)  

                                                             (2) 
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Both reactions have traditionally facilitated though the use of a platinum catalyst. 

However both scenarios come with their own flaws. At the anode, an ideal scenario would 

involve the use of a pure stream of H2 (g). A more realistic scenario however is one, which 

accounts for the inclusion of trace elements such as CO and S, which would come from the 

production of hydrogen through external processes. The presence of these trace elements, 

especially CO, can reduce the performance of the anode by poisoning the Pt catalyst. At the 

cathode, a combination of factors including the low partial pressure of atmospheric oxygen, the 

Ostwald-ripening of smaller Pt NPs [11] and the low operating temperature conditions of the fuel 

cell further retard the already slow kinetics of the oxygen reduction reaction. The traditional way 

to compensate for this loss in activity has been to increase the amount of Pt catalyst at the 

cathode.  However the prohibitive cost of Pt as well as its scarcity suggests that this approach is 

uneconomical. It is for this reason that a number of different research groups, including ours 

have invested efforts into various ways of circumventing the current problem. 

1.3 Catalysts for Low Temperature Fuel Cells 

 A traditional way of approaching the problem has been to reduce the amount of Pt being 

used by combining it with other materials in a bimetallic composition. To this extent, there have 

been several Pt-based studies published in the ORR electrocatalysis literature. Some have been 

focused on the combination of Pt with other materials [12-18] , while others have looked at 

different Pt – support combinations [19-23] ORR. Shape can also play an important part in 

catalytic and electrocatalytic reactions. Indeed, advances in synthetic chemistry now allow for 

the efficient control of size and shape at the nanoscale [24-28]  
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Figure 3 An illustration of a subset of different NP morphologies achievable through synthetic 

chemistry and the lattice facets they enclose (in parentheses). 

 

 

Different shapes of NPs, by virtue of their geometry, can promote reactions to different 

extents. The underlying principle revolves around the prevalence of different lattice planes, 

which prevail as a function of particle morphology and the selectivity of these lattice planes 

towards a reaction pathway of interest. Previous work on single crystal modeling of the Pt – O2 

interaction [29] showed that oxygen reduction over the Pt (110) surface was more active and 

more selective to H20 than the Pt (100) and (111) respectively. This also corresponds to a 

decreasing trend in surface coordination number, i.e. (1 1 0): 7 > (1 0 0): 8 > (1 1 1): 9 

respectively [30]. This trend also correlates with the selectivity of the more kinetically favored 

morphologies, which demonstrate higher selectivity to H2O reduction than the more 

thermodynamically favored ones.  

 A more recent approach, informed by density functional theory modeling proposes, the 

consideration of alternative materials that can replace the use of Pt in PEMFCs. Through, the 

computational screening of different materials, it is possible to rank different materials based on 

how their surface interacts with oxygen. 
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Figure 4 A volcano plot of the activity on the (111) surface of different metals. Image courtesy of 

Norskov et. al. [31] 

 

 

 Norskov et al. [31] , generated a ranking of different metal surfaces which was illustrated in the 

form of a volcano (figure 9), where the oxygen reduction activity is given as a function of the 

oxygen binding energy.  From this diagram, the reasoning behind the adoption of Pt as an ideal 

Pt catalyst becomes evident. Platinum displays the best activity towards the oxygen reduction 

reaction. However, Pd falls right below Pt with a slightly lower binding energy and at 

approximately half the price of Pt (www.kitco.com) it is a potent contender to replace Pt as an 

electrocatalyst for PEMFCs.  

1.4 Pd-based Electrocatalysts for Low Temperature Fuel Cells 

 Pd has traditionally been used for a number of different catalytic applications, 

particularly in the electronics and petroleum cracking industry. It has also been considered for 

hydrogen storage applications. More recently, the search for new catalysts for electrocatalysis as 

well as other catalytic applications primarily driven by advances in synthetic chemistry. Some of 

http://www.kitco.com/
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the methods typically used have resulted in the generation of novel kinetically favored 

monometallic morphologies of Pd NPs. Indeed, Lee et al. [32] and more recently Niu et al [33, 

34] have reported on elegant techniques for tailoring the shape of Pd nanocrystals by changing 

the kinetic parameters – some as simple as changing the order of added reagents -  that govern 

the nucleation and growth of Pd nanoparticles. Other scientists have adopted the combination of 

palladium with other materials through the use of innovative processes of generating new 

compositions of NPs. Crooks et al. are well known for the galvanically deposited dendrimer-

encapsulated mono-and bimetallic NPs [35-38]. Xia et al. are also well known for a variety of 

innovative new materials for different applications [39-42] including electrocatalysis. A major 

publication [43] looks at the combination of Pd with Pt in a dendrite framework which resulted 

in improved electrocatalytic properties vis-a-vis the status quo.  

In the current work, the authors considered the different approaches that have been so far 

adopted in studying different materials. The current work is designed around three objectives. 

Through modifications in composition, morphology or the active incorporation of a surfactant, 

this dissertation presents a study of three different approaches to improving PEMFC  

electrocatalyst performance each of which builds on one of the major approaches aimed at 

improving PEM FC technology.   

In a first instance, a monometallic study of palladium dendrites and cubes builds on the 

work by Xia et al. with the objective to isolate and capture the electrocatalytic properties of Pd 

and comparing it to that of Pd cubes as a basis of reference. A discussion on how morphology 

differences may affect influence hydrogen storage properties is also presented.  

 A second objective of this dissertation was to study the influence of new NP composition 

on the electrocatalytic properties of PdAg bimetallic NPs, through a synthesis technique 
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originally designed to generate Au nanocages, using Ag sacrificially. In this work, a modified 

synthesis was used to generate PdAg nanocages, which were compared with DEN synthesized 

bimetallic compositions of PdNi11 & PdAg11,  where the subscripts denote the molar ratios of 

each component. 

 A final objective was to study the electrocatalytic influence of the active incorporation of 

a surfactant / stabilizing agent. This was done using a system comprising ca. 3nm Pt NPs capped 

with PVP as a model system. The initial part of the work compared washed and unwashed NPs. 

A follow up to this work [44], not included here, looked at catalytic studies of PVP-Pt interaction 

via TPO experiments as a function of NP size.  

Ligand and geometric [45-47] effects play an important role in improving the activity of 

bimetallic electrocatalysts [48]. Ligand effects rely on changing the electronic structure of the 

primary metal site [49] through which a favorable charge transfer is induced. Geometric effects 

include particle size, dispersion state and bond strain.  These two properties inform the 

discussion sections of this work. 
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CHAPTER 2:  EXPERIMENTAL METHODOLOGY 

 

 

2.1 Syntheses 

 

2.1.1 Aqueous Synthesis of Pd Cubes and Dendrites 

 

Palladium nanoparticles on the order of 25nm were synthesized following a previously 

reported aqueous mechanism [32] for the synthesis of cubes and dendrites. Briefly, an initial 

volume of 47mL of Milli-Q (Direct-Q uv) water was introduced into a clean beaker and left 

stirring. A 1mL-aliquot of 5mmol K2PdCl4 was subsequently introduced into the reacting vessel. 

This was followed by the addition of 1mL aliquots of 5mmol CTAB and L-Ascorbic acid within 

10 seconds of each other. While this sequence resulted in cubes, switching the order of the last 

two reagents yielded dendrites. Reagent grade solvents from Sigma Aldrich including K2PdCl4 

(Potassium Tetrachloro Palladate IV); CTAB (Cetyl trimethyl ammonium bromide); and L-

Ascorbic Acid were used in the process. A color change from dark yellow to dark brown 

confirmed the precipitation of the nanoparticles in solution. The final product was stirred for an 

additional 5 minutes prior to sitting it in a dark area overnight. The particles were washed to 

remove excess surfactant material. Washing consisted of centrifuging vials containing the 

particles, removing the supernatant material and re-suspending the particles in excess Milli-Q 

(Direct-Q uv) water. This process was continued for 3 additional cycles before supporting. 

Samples that were used for Transmission Electron Microscopy, X-Ray Diffraction and 

electrochemistry experiments were studied in unsupported batches. Electrochemistry samples 

were concentrated by centrifuging down to a minimal volume. Subsequently, measured 
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depositions were immobilized onto a glassy carbon electrode and bound with Nafion. Samples 

prepared for H2-sorption and ethylene hydrogenation experiments were supported on enough 

Silica (Cab-O-Sil; Sigma-Aldrich) to make a 1wt % silica-supported palladium (Pd/SiO2) 

system. The resulting composition was heated enough to evaporate the water then adequately 

stored for later use. In a similar fashion, 2wt% Vulcan carbon-supported palladium (Pd/C) 

systems were prepared for Extended X-Ray absorption Fine Structure (EXAFS) experiments. 

 

Figure 5 Histogram indicating ranges for Pd cube sizes. The bulk of the cubes fall in the 20 – 

40nm range (left). Typical distribution of Pd cubes with average cube size ca. 25nm (right) 

 

 

 

Figure 6 Histogram indicating ranges for Pd dendrite sizes. The bulk of the cubes fall in the 20 – 

40nm range (left). Typical distribution of Pd dendrites with average cube size ca. 21nm (right) 

2.1.2 Reflux Synthesis of Pt and Ag NPs 
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Platinum nanoparticles of approximately 3nm were synthesized using a procedure 

originally adopted from Kuhn et al. [25]. The same technique was adapted to the synthesis of 

silver nanoparticles of a similar size (employed for a different application). Briefly, 62.15 mg 

reagent grade chloroplatinic acid (H2PtCl6; Sigma-Aldrich) was used as precursor.  This was 

combined with 20 mL of de-ionized water, 133 mg of solid polyvinyl pyrolydone (PVP; MW: 

40,000 g/mol; Sigma-Aldrich) and 180 mL of methanol in a reaction vessel. The reactor was 

lowered into an oil bath maintained at 110
o
C. The reflux process was carried out for three hours 

without stirring. During this process the solution turned a dark brown or yellow color, 

confirming the precipitation of the Pt NPs Upon completion of the refluxing process, the 

supernatant (methanol) was evaporated at 55
o
C. The remaining suspension was subsequently re-

dispersed in ethanol. Select batches of NPs were washed by adding a combination of ethanol and 

hexane in a 1:3 ratio. This suspension was sonicated for 15 minutes, spun in a centrifuge (VWR 

clinical 100 centrifuge) at 3000rpm for 10 minutes and the supernatant pipetted off. This process 

was repeated until the resulting suspension was deemed satisfactorily clear of any surfactant 

material. This was typically after three cycles. Finally the NP suspensions were suspended in 

excess ethanol for further studies. Batches of washed and unwashed NP suspensions differed 

only in the inclusion or omission of this process. Images of the washed and unwashed particles 

as well as catalytic results are the topic of a first publication on this topic. [50] 

2.1.2 Dendrimer-Encapsulated NP Synthesis 

A series of bimetallic PdAg and PdNi NPs were synthesized to achieve particle sizes in 

the range of 1 – 10nm, a range, which is directly relevant for numerous catalytic applications 

including low temperature PEMFC electrocatalysis. This process was carried out via a 

complexation / co-complexation technique. The name of the technique originates from the initial 
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step in this process, which involves the complexation – in the case of a monometallic system; or 

a co-complexation - in the case of a bimetallic system of the respective ions in controlled 

volumes and concentrations with the tertiary amine groups within fourth generation PAMAM-

OH or (G4-OH) to form G4-OH (M1
m+

(x) M2
m+(

40-x)), where M1
m+ 

and M2
m+

 represent the 

metal ions involved in the synthesis and x represent the equivalent ratios. Dendrimers were 

purchased from Sigma-Aldrich (10% in methanol) with no further purification performed before 

use. 

In a scintillation vial, 10mls of a 250 μM stock solution was prepared by combining an 

appropriate volume of the dendrimer solution with enough argon-bubbled “in-house” DI water.  

In addition, a 40-mol equivalent of solutions containing the desired precursor was prepared. For 

monometallic Pd experiments, a 0.01M solution of Pd
2+

 from PdCl2; (research grade; from 

Sigma-Aldrich) salt was added to 1.5mL of the 250μM dendrimer solution. In the case of 

bimetallic systems, a combination of appropriate volumes of the desired salts, e.g. Pd
2+

 from 

0.01M PdCl2 and Ni
2+

 from 0.01M NiCl2 was used in a ratio, which reflects the desired 

composition. 

Table 2 shows typical concentrations and volumes associated with the different ratios. 

Differences in chelation rates also dictated the order in which the solutions were added. Upon 

completion of the complexation reaction, excess NaBH4 was added to the reaction vessel, 

prompting the reduction of the ions to a monometallic or bimetallic composition of NPs. The 

fresh NPs, still enfolded by the dendrimer framework, were purified via dialysis through dialysis 

cellulose tubing membranes/sacks (Sigma-Aldrich; max MW: 12000). Dialyses occurred over a 

24-hour period with the bags lodged in a 1L DI-water bath with 4 equivalent volume water 
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changes. At the end of the 24 hr. period, the synthesis was considered complete and the NP 

suspension was transferred and stored in a scintillation vial for further studies. 

 

Table 2 Ratios and concentrations for the different compositions of Pd-Ag and Pd-Ni NPs used 

to generate bimetallic NPs 

 

 

Ratio Concentration 

Pd : Ag (1:2) 660μL (0.01M K
2
PdCl

4
) 

1318μL (0.01M AgNO
3
) 

Pd : Ag (1:1) 930μL (0.01M K
2
PdCl

4
) 

930μL (0.01M AgNO
3
) 

Pd : Ag (2:1) 1311μL (0.01M K
2
PdCl

4
) 

655μL (0.01M AgNO
3
) 

Pd : Ni (1:2) 615μL (0.01M K
2
PdCl

4
) 

1230μL (0.01M NiCl
2
) 

Pd : Ni (1:1) 986μL (0.01M K
2
PdCl

4
) 

986μL (0.01M NiCl
2
) 

Pd :Ni (2:1) 1299μL (0.01M K
2
PdCl

4
) 

650μL (0.01M NiCl
2
) 
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Figure 7 Series of images representing a mixture of Pd and Ag nanoparticles ~2nm. (a-f: EDX 

Diffraction pattern for P/Ag mixture illustrating rings resulting as a mixture; low resolution 

image (Scale bar: 60nm); c, d: High resolution images of different regions on carbon grid 

illustrating physical mixture of Pd and Ag NPs respectively (Scale bar: 2nm); e, f: Atomic 

spacing identification of individual Pd and Ag NPs, illustrating physical composition of discrete 

Pd and Ag NPs respectively. 
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Figure 8 Series of images representing a mixture of Pd and Ni nanoparticles ~2nm. (a,b: EDX 

Diffraction pattern for P/Ni mixture illustrating rings resulting as a mixture; low resolution 

image (Scale bar: 10nm); c, d: High resolution images of different regions on carbon grid 

illustrating physical mixture of Pd and Ni NPs respectively (Scale bar: 2nm); e, f: Atomic 

spacing identification of individual Pd and Ni NPs, illustrating presence of discrete Pd and Ag 

NPs respectively 
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2.1.3 Bimetallic Pd-Ag Nanocages 

Hollow cubes were synthesized with a shell consisting of Pd and Ag with trace amounts 

of Cu.  This synthesis process consisted of three different steps. The first step, adopted from Tao 

et. al [51] involved the polyol synthesis of Ag nanocubes. The as synthesized Ag nanocubes 

were used as seeds and enhanced with a Pd shell through a similar polyol synthesis technique. 

Three different shell thicknesses were obtained (5, 6 and 10nm) based on the combination of 

surfactant and precursor amounts used. Depending on the shell thickness desired, 0.005, 0.1125 

or 0.025mmol of Ammonium hexachloropalladate (IV) ((NH4)2PdCl6 ; Sigma-Aldrich) was 

dissolved together with 2mmol PVP in 9mL (1,5-pentanediol) and purged under an Ar stream for 

10 minutes in a three-necked reaction vessel. To this mixture, 1mL of the as-synthesized Ag 

nanocubes was injected. After adequate mixing, the reaction vessel was maintained at 140
o
C in 

an oil bath for 20 minutes under a stream of Ar gas. The resulting NPs were precipitated with 

excess acetone after cooling. 

The resulting NPs were then washed using a procedure previously described and 

reported. [44, 50, 52]  However, centrifuging was done at 6500rpm and the volumes of ethanol 

and hexane were 1 and 14mL respectively. The washed NPs were finally suspended in an excess 

of ethanol for characterization, imaging. Details of the imagery as well as the NP composition 

details can be found in the work of Hokenek et al. [53]. 

2.2 Electrocatalysis 

 

Electrocatalysis involves the study of catalytic phenomena within an electrochemical 

environment. This topic encompasses a suite of experimental electrochemical techniques, which 

are essential for the study, and elucidation of ideal electrocatalysts for PEMFC applications. In 
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this work, the CV and LSV/ORR techniques were primarily used in tandem with traditional 

characterization and catalytic experiments to study electrocatalysts.  

An understanding of the reactions occurring with a PEMFC allows us to replicate a 

similar environment using an electrochemistry set-up in order to explore the catalytic properties 

of model catalysts under consideration. The highly sensitive nature of electrochemical studies 

requires that prior to each experiment, the electrochemical cell was washed out with aqua regia 

and allowed to sit over night. Subsequently, it was rinsed out with copious amounts of tap water 

followed by DI water. It was also rinsed with 0.1M HClO4 or 0.1NaOH, the electrolyte solution 

it would eventually hold. The experimental set-up itself consisted of a three-electrode 

electrochemical reactor including a reference electrode, a counter electrode and a working 

electrode. The reference electrode consisted of a SCE whose potential was routinely measured 

against second reference electrode – reserved for this singular purpose - in order to maintain 

accurate readings. Measured potential differences of less than 5mV were considered small 

enough to ignore, however differences above this value prompted a replacement of the 

containing fluid, saturated KCl, obtained directly from GAMRY Instruments
 ®

.  The counter 

electrode (Pine) consisted of a coiled platinum wire fitted on the tip of a chemically resistant 

epoxy rod.  The working electrode assembly consisted of a GCE RDE tip fitted into a holding 

shaft and secured in place by a RDE710 rotator to establish the working electrode. The RDE tip 

was occasionally replaced by an RRDE tip on which the GC center was surrounded by a 

platinum ring.  
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Figure 9 An illustration of the two different types of electrode tips, highlighting their differences. 

The RRDE tip (right) incorporated a Platinum ring for H2O2 detection and reduction while, the 

RDE tip (left) is equipped only with the GCE core. 

 

 

The use of either the RDE or RRDE tip was determined by the chemistry of the reactions 

being studied; a detailed explanation is given later in this document. Occasionally, the 

electrochemistry assembly was calibrated to ensure continual accuracy and repeatability of 

measurements.  Reference 3000™ (Gamry Instruments) and Reference 600™ (Gamry 

Instruments) were used for all experiments. 

2.2.1 Electrode Preparation 

The working electrode was prepared by mechanically immobilizing a measured volume 

of the NP suspension onto the glassy carbon center portion of the electrode tip. Each deposition 
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was air-dried before a subsequent one was made to prevent the spread of the NP film onto the 

Teflon sleeve. Upon drying, a very thin film of Nafion
®
 117 (Sigma-Aldrich) was added to bind 

the NP film to the GCE in addition to facilitating proton conduction. Such a preparation ensures 

good communication of the NP film with the GCE by virtue of the Nafion
®
 which increases the 

surface area in communication with the GCE. After each experiment, the electrode tip was 

mechanically polished on a polishing cloth (BUEHLER
®
) doused with a small amount of 

deagglomerated gamma 0.05 micropolish II (BUEHLER
®
). The polishing process, executed by 

repeatedly drawing a figure eight in the polish, was continued till the GCE center showed a 

distinct shiny reflection. Upon satisfactory polishing, the GCE tip was washed with tap, then DI 

water and subsequently sonicated for five minutes in a FS20H ultrasonicator (Fisher Scientific). 

This process completed the cleaning of the electrode tip, readying it for a subsequent experiment. 

NP films that consisted of a thin film of nafion with NPs from the aqueous synthesis (Chapter 4) 

were more robust and stable than others (Chapter 5), which were based on the combination of 

nafion with DENs and organically synthesized NP films. The result of this lack in film quality 

was manifested in the ORR curves recorded. 

2.2.2 Cyclic Voltammetry 

Within the realm of electrocatalysis, a typical CV experiment consists of measuring the 

current density response of a modified working electrode. Current density is recorded as a 

function of a reversible ramp in its potential difference, measured with respect to a reference 

electrode. In addition to the material composition of the working electrode, the current density 

response will also vary based on a number of other factors including but not limited to the rotator 

speed, the amount of material on the electrode, and the concentration and purity of the electrolyte 

solution. A typical Pd or Pt CV scan consists of three distinct regions, half of which is in the 
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anodic sweep and the other in the cathodic. The three regions include the HER and OER, 

corresponding to where H2 (g) and O2 (g) respectively are evolved. A third region - the DLR, 

separates these two regions.  

 

Figure 10 Pt/C Cyclic voltammogram showing HOR, DLR & OER.(Garsany et al. [54]) 

 

 

Two important properties of a material that can be obtained from the CV experiment 

include the electrochemically active surface area, ECSA and the stability of the material as a 

function of the cycle / time. By definition, the ECSA is a quantification of the region of the 

modified working electrode, where actual electron exchange takes place. [55] This is not to be 

confused with the geometric surface area, which is the visible physical area of the electrode 

(GCE) as indicated in figure 9 It also differs from the idea of a traditional catalyst surface area, 

[56] which refers to the number of active sites, which facilitate adsorption, species formation and 

desorption, all within the pores of a given catalyst material. In general, the higher the ECSA is, 

the better. It can be measured by integrating the H2 adsorption region of the cathodic sweep in 

the HER (see shaded area in figure 10) between the hydrogen evolution peak and DLR. The 

resulting coulombic charge obtained can be converted, using a previously determined and widely 
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accepted conversion factor of 212μC/cm
2
 [57-60] between the monolayer adsorption maximum 

and the double layer region as illustrated in figure 10. Stability tests of the electrocatalysts give 

an indication of how efficient the NP film is over time. Extended CV experiments (on the order 

of hours or days) can be useful in establishing the rate at which ECSA is lost and, from there can 

be compared with other materials or NP film compositions.  

The general procedure for CV experiments used here was adopted from Garsany et al. 

[54] and modified to suit the current environment. Briefly, an extended CV experiment was run 

over several hours to establish a trend in the ECSA loss and identify a point at which the 

electrode was clean to establish a measurement. CV scans were recorded between 0 and 1.2V 

RHE (-0.244 and 956 SCE) at 1600rpm. A scan rate of 20mV/s was used to minimize noise 

contributions while effectively accommodating the distinct features of the CV scan and scan rate 

of 20mV/s. The electrolyte solution consisted of a freshly prepared 100mL of Ar-bubbled 0.1M 

HClO4 (aq). All CVs reported were normalized by the geometric surface area of the GCE 

(0.1964cm
2
). 

2.2.3 Linear Sweep Voltammetry (LSV) / Oxygen Reduction Reaction (ORR) 

ORR experiments constitute an important experiment in evaluating the activity of 

electrocatalysts. The ORR experiment is similar to the CV experiment since it involves the 

measure of a current density as a function of a voltage ramp. It does however differ in two 

distinct manners. Firstly, the voltage sweep is typically carried out in the cathodic direction only. 

Secondly, it is conducted in an O2 (g) saturated electrolyte solution, though a second identical 

scan is recorded in an Ar (g) saturated electrolyte solution. The latter is then subtracted from the 

former to account for capacitive current contributions from the electrolyte solution, which must 

be extracted to reveal the absolute ORR profile.  
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Figure 11 Typical ORR curves (for Pt/C) Adapted from (Garsany et al. [54]) with a designation 

of the onset potentials corresponding to the different curves. 

 

 

There are two significant pieces of information that can be obtained from an ORR curve. 

The first is the onset potential. This refers to the first inflexion point on a cathodic sweep ORR 

curve or the potential at which the O2 (g) reduction process starts. It is an intrinsic property of the 

given electrocatalyst. This property may however be varied by manipulating the properties of the 

electrocatalyst NPs. It can also vary by virtue of human error or a lack in experiment quality. 

Typical factors that may contribute to such variations include the quality of the NP film on the 

WE, the accuracy of the RE, cleanliness of the electrochemical reactor and by inference the 

absence of impurities from the electrolyte solution. The second piece of information relates to 

the pathway that is followed in the reduction of O2 (g) to H2O(l/g). 

 

                                       (3) 
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There are two pathways to O2 reduction that are typically observed during an ORR 

experiment. The first is one illustrated above in (3) assumes that there are no intermediate 

species and that the formation of water proceeds directly. 

 

         
        

             
          (4) 

            
        

                       (5) 

 

The second pathway, the presence of an intermediate species in the form of H2O2 is 

accounted for as seen in (4) and (5).  While both pathways end up in the formation of H2O (l), 

one particular catalyst may favor one pathway over another. It is possible to determine the 

pathway that is favored by a particular electrocatalyst by carrying out a series of ORR curves at 

different rotation speeds (rpm) and fitting the resulting data to a Koutecky-Levich.  [61, 62] 

The Koutecky-Levich plot is the graph of a straight line, which plots the inverse of the 

mass transport-limited current, id(iL) at different points on the ORR curve for different rotation 

rates (ω) as a function of the inverse of the said rotation rate, i.e. (1/ω)
0.5

. The measured current, 

im is a function of the kinetic current, ik   and the mass transport-limited current, id. Furthermore, 

id  is a function of the Faraday constant, F (96500 Coulombs per mole, Cmol
-1

); the concentration 

of dissolved gaseous species, CO2 (1.3×10
-3

 moles per decimeter-cubed, moldm
-3

) [63]; the 

diffusivity of the gaseous species, i.e. DO2 in 0.1 HClO4 (1.7×10
-5

 centimeter-squared per second, 

cm
2
s

-1
); the rotation rate, ω (revolutions per minute, rpms) and the kinetic viscosity, ν (1.0×10

-2
 

centimeter-squared per second, cm
2
s

-1
) of the electrolyte solution and the geometric surface area, 

A. All combined, the Levich equation [64-66] presents a form, which accommodates all the 

above-mentioned parameters as follows: 
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By recognizing that the Levich equation satisfies the requirements for a straight-line plot, 

a simplification can be made acknowledging all constant terms with a new generic encompassing 

constant, B. This new modification brings about a simpler form of the Levich equation as 

follows:  

 

  
  

 

  
 

 

  
  

 

  
  

 

  
 
 

 
(7) 

 

where, 

            

 
    

 
  
  

(8) 

 

In this form (8), we can recognize that a plot of the reciprocal of the measured current,  

im
-1

 as a function of the reciprocal square-root of the rotation rate, i.e. ω
-0.5

 would yield a straight 

line plot with its ordinate intercept corresponding to the value of the kinetic current, ik and its 

slope, equal to the constant B, from where the number of electrons relevant to the electrocatalytic 

reaction can be extracted. This process of analysis forms the basis of the electrocatalytic 

evaluation for the different materials evaluated in this document. 

2.3 Characterization 

2.3.1 Transmission Electron Microscopy  

A well-dispersed drop of the NP/BNP suspension was further diluted with hexane (or 

alcohol – methanol / ethanol) or DI water depending on solvent used during synthesis. The new 
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mixture was agitated via a Vortex Genie (Fisher Vortex Genie 2) and a drop of the new mixture 

was pipetted on to the carbon-coated side of a 200 sq. mesh copper grid (Electron Microscopy 

Sciences, FCF200-Cu) and suspended in a vacuum oven (Fisher Isotemp Vacuum 281A) 

maintained at 40°C till it was dry.  NP/BNP images were obtained using a Tecnai t20 TEM as 

well as a Tecnai TF20 (200kV) TEM for high-resolution imagery, diffraction patterns as well as 

atomic plane signatures and EDX spectra.  Additionally, atomic spacing and particle size (width 

– cubes; diameter - spheres, dendrites) distribution were determined via the ImageJ freeware, 

(NIH) and the ImageJ-based FIJI software.  

2.3.2 X-Ray Diffraction 

 A Philips X-Ray diffractometer was used to generate the X-Ray profiles for desired 

NP/BNP samples that were synthesized. The instrument was operated at a tension of 45 KV and 

a current of 40 mA.  Typical scans were operated with a step size of 0.02 degree equipped with 

Cu K [alpha] ([lambda] = 0.154 nm) radiation. Reported XRD pattern noise was reduced using 

the Magicplot 
2.3 ™

 plotting software.  

2.3.3 X-Ray Absorption Spectroscopy 

 

X-ray absorption spectroscopy (XAS) studies were performed at the DuPont-

Northwestern-Dow (DND) Collaborative Access Team (CAT) beamline 5-BM-D (BM = 

bending magnet, http://www.dnd.aps.anl.gov/) at the Advanced Photon Source of Argonne 

National Laboratory. For these experiments, the storage ring energy and circulating current were 

7.0 GeV and 100.6 mA, respectively. X-rays were selected using a Si (111) monochromator.  NP 

batches examined were supported on VC (2% supported NPs) 
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CHAPTER 3:  PLATINUM LIGAND EFFECTS
1
 

 

 

3.1 Introduction 

Despite many advances to replace the current Pt-based materials with Pt-free 

materials[67-73] or Pt-based bimetallic particles [74-77], efforts have not yet lead to an ideal 

material when evaluating both electrocatalytic turnover and cost factors [78]. Thus, it is 

envisioned that Pt components will be used in the foreseeable future therefore problems 

associated with its use must be addressed.  

An important consideration regarding the use of Pt, or any metallic component, is 

stability against corrosion under PEMFC operation. In addition to the general notion of metals 

dissolving in acidic conditions, recent work[79] verified that small Pt particles are more 

vulnerable to corrosion as compared to large particles and bulk Pt. Additionally, Ostwald 

ripening, a phenomenon by which smaller (Pt) nanoparticles will dissolve and re deposit on to 

bigger NPs is of concern as observed by other scientists [66]. This trend compromises the efforts 

to use small Pt particles for their high surface area, which would lead to an efficient use of the 

precious metal. The addition of surface stabilizing agents, which would decrease the corrosion 

rate of Pt, is a method that could be used to enhance the stability of the metal-based ORR 

electrocatalysts.  

                                                        
1 This chapter was published in ASTM International (Blavo, S., Baldyga, L., Sanchez, M., Kuhn, J.N., The Effect of 
Stabilizing Agent on Platinum Nanoparticles and Implications Towards the Oxygen Reduction Reaction. ASTM 
Int., 2011. 8(9) ) Permission is included in Appendix  B 
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Advances in synthetic chemistry now permit the preparation of metal particles with size 

and shape control and many synthetic routes require the use of chemical additives for the 

control[80-85]. These chemical additives, also known as surfactants or capping agents, provide 

morphology control by regulating the metal’s nucleation and growth kinetics. By modifying 

these properties, it is also possible that other properties are altered. In fact, changes in catalytic 

properties have been implied[86-88] and reported[89]. Other methods, such as use of non-carbon 

supports[90] and partial coverage of the metal surface by silica [91-93] for particle stabilization 

were reported for enhancement of Pt stability under conditions relevant to PEMFCs. 

Additionally, incorporation of organic molecules onto the surface of metal electrocatalysts is 

responsible for changes in ORR electrocatalysis. The addition of polypyrrole[94, 95] and 

macromolecular dendrimer polymers[96] were responsible for different product selectivity for 

ORR catalysis in the presence of methanol. The presence of polyvinylpyrrolidone (PVP) was 

deemed more important than even the integration of a second metal to Pt particles[97]. These 

studies suggest that capping agents used during colloidal synthesis of metal nanoparticles may 

serve a second function—the stabilization of metal particles under acidic conditions.  

In this chapter, the role of PVP as a corrosion-resistant surface-stabilizing agent for Pt is 

evaluated and the approach is highlighted in Scheme 1. Monodisperse and spherical ca. 3 nm Pt 

particles were synthesized using a single-pot colloidal synthesis with PVP as a surfactant. 

Following the synthesis, the Pt particles were characterized and used for electrochemical testing. 

As a control, Pt particles from the same synthetic procedure were repeatedly washed via hexane-

ethanol cycles to remove the PVP. The washing cycles do not impact the size or shape of the Pt 

particles whereas it does effectively remove the PVP as demonstrated by the carbon dioxide 

profiles observed during the temperature-programmed oxidation experiments. In electrochemical 
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testing, the Pt particles with PVP (unwashed) demonstrate greater stability than the PVP-free Pt 

particles (washed) and could provide the necessary stability for commercial realization of 

PEMFCs.  

 

Figure 12 Sequence of experimental procedure from Pt particle synthesis through   

electrochemical testing. 

 

 

3.2 Cyclic Voltammetry (CV) Experiment 

 

GAMRY INSTRUMENTS suite of equipment (RDE710 Rotating Electrode, Reference 

3000, Dr. Bob Electrochemical cell) was used for all CV experiments. Additionally, reference 

and counter electrodes, which consisted of a saturated calomel electrode, SCE and Platinum 

wire, were employed. The working electrode consisted of the rotating disk electrode shaft fitted 

with the Pt nanoparticle film deposited on the glassy carbon electrode (GCE). Samples were 

prepared by making thirty 10μL aliquot depositions of the platinum suspension on the GCE. The 

nature of the suspension required each aliquot to be dry before a subsequent one was added to 

ensure that all material was deposited on the glassy carbon amorphous surface.  
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Figure 13 Cyclic Voltammetry Experiment of unwashed Pt NP. 200 cycles were recorded at a 

scan rate of 50mV/s and a step size of 2mV. 

 

 

 

Figure 14 Cyclic Voltammetry Experiment of washed Pt NP. 200 cycles. Cycles were recorded 

at a scan rate of 50mV/s and a step size of 2mV. 
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Figure 15 A comparison of respective cycles from the washed and unwashed cyclic voltammetry 

experiment (Cycle 10).   

 

 

 

Figure 16 A comparison of respective cycles from the washed and unwashed cyclic voltammetry 

experiment (Cycle 200).   
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Prior to each experiment, the electrolyte solution (1M HClO4; Sigma Aldrich) was 

purged for 20 – 30 minutes with Argon gas to remove any lingering impurities. Electrolyte 

solution was changed for each experiment to ensure accuracy. CV scans were evaluated between 

the hydrogen (-0.244V versus SCE) and oxygen (1.005V versus SCE) reduction potentials. At 

least 200 scans were performed for each experiment; a point at which the scan profile was 

considered to have stabilized. Current density was determined by normalizing the collected 

current by the geometric surface area of the GCE. 

3.3 Results & Discussion (~3nm Pt NPs) 

TEM photographs obtained for the washed and unwashed batches of ~3nm Pt NPs 

demonstrated that the washing did not have an effect on the Pt particle size. It also revealed the 

clear presence of the capping agent material. A size distribution of the Pt nanoparticles was also 

evaluated from TEM images obtained of washed and unwashed Pt NPs. From each sample, 100 

particles were sized using the Tecnai ImageJ
 
software and the respective scale bars as a 

reference. [52] 

The respective histograms associated with each Pt NP batch shows the size distribution 

associated with the Pt NP batches The average size of particles recorded in unwashed batches 

was 3.4 nm, while that in washed batches was 3.3 nm. These values confirm that the washing 

steps did not have a considerable impact on the Pt particle size.   

From TPO experiments of washed and unwashed Pt particles using 10% oxygen in 

helium, the oxidation of PVP was observed.  TPO experiments, show the corresponding 

oxidative processes observed for the washed and unwashed Pt particles, respectively.[52] Others 

have observed the decomposition of PVP under oxygen beginning at 100
o
C [98], which can also 

be seen in both of these experiments. This observation is corroborated by the increased 
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abundance of CO2 and H2O - as expected - during oxidation in the unwashed particle batch. The 

abundance of H2O continues to increase until 500
o
C in both spectra. The CO2 abundance in both 

graphs continues to rise until 400
o
C and, later at about 600

o
C the abundance rises again for a 

moment before declining for the rest of the experiment.  The difference between the unwashed 

and the washed TPO experiments is highlighted by the amounts of CO2 and H2O, which come 

off the respective samples. Logically, the unwashed Pt particles batch experiment- with a 

significant amount of PVP – shows more prominent CO2 and H2O peaks while the washed Pt 

particles batch experiment, show no discernibly similar peaks, an indication that most, if not all 

of the PVP was effectively removed in that case. (figure 3, [52]) 

A summary of the electrochemistry results indicated that, for the concentration of the 

nanoparticle suspension used in both experiments, the profile of the CV scan became constant in 

the vicinity of 200 cycles. The CV scan corresponding to the washed particles, figure 14, shows 

little variability. On the other hand, the CV result from the unwashed particles in figure 13, 

showed an appreciable level of variability, particularly, in the region between the hydrogen 

reduction potential and the vicinity of the peak anodic current of the scan curve.  

The differences between the two experiments are further noticed by comparing respective 

cycles from both experiments as shown in figure 15 and figure 16. This comparison highlights an 

increase in current density with scan number for the unwashed particle experiment. This trend 

was attributed to a charge transfer by the functional groups of PVP to the Pt surface, resulting in 

electron-rich Pt particles that contribute to higher current density curves. This model is in 

agreement with previous findings [97, 99, 100] that report on the charge transfer between PVP 

and metal surfaces as important phenomena in catalysis. Briefly, Borodko et al. elaborate on two 



 36 

distinct mechanisms through which functional groups from the PVP can bind to a Pt (or Rh) 

surface. 

 

Figure 17 Model for the PVP/Pt Interaction in Reduced and Oxidized States ([2]) 

 

In the first instance, the carbonyl group was shown to bind to a Pt surface when in the 

oxidized state, i.e. surface (Pt
2+

) species. The authors report on Pt
2+

 acting as a proton acceptor 

by virtue of their ability to attract carbonyl group lone pairs to the vacant d orbitals. The scenario 

was reversed for a reduced Pt surface species. Here, in the absence of vacant orbitals, the Pt 

surface repelled carbonyl group lone pairs.  This is illustrated in scheme 3.4a. A second scenario 

reported a bidentate interaction of PVP with the Pt surface (scheme 3.4b). In addition to the 

carbonyl group, the Pt surface also accommodated lone pairs from the nitrogen atom in PVP.  

that for PVP/Pt the intensity of the first carbonyl Cd O overtones

(at 3200 and 3280 cm- 1) is comparable with intensities of the

fundamental modes. This is in agreement with the theoretical

prediction for adsorbed molecules on a metal surface that exhibit

a combination of resonance Raman and strong charge-transfer

interaction SERS. In such instances, the overtone intensity in

the Raman spectrum may be as strong as for the fundamental

modes.11 The number of bound amide groups is relatively small

and undetectable in our infrared experiments. The observation

of surface enhancement of some vibrational modes of PVP/Pt

is due to donation of an electron lone pair on the carbonyl group

into an unoccupied orbital of the platinum nanoparticle surface.

It was previously shown that on the surface of Pt nanoparticles

above 2 nm in size, only a monolayer of PtO was formed, which

is reducible by H2 in the range 50- 100 °C.12 Pt nanocrystals

in an oxidized state (Pt(II)) have surface platinum ions with d8

low-spin configuration and therefore may act as acceptors of

lone pair electrons from carbonyl groups into vacant d-orbitals.

In contrast, surface platinum atoms in the reduced state (Pt(0))

will repel the lone pair electrons of a carbonyl group (Scheme

2). Thus, the interaction between PVP and Pt at an oxidized

surface is stronger than on reduced nanocrystals; this is reflected

by changes in the intensities of the Raman spectrum of adsorbed

PVP.

The spectra shown in Figure 5 indicate that consecutive

treatment of the same PVP/Pt sample exposed to flowing H2/

N2 and O2 induced visible changes of the integrated intensities

of Raman doublet lines at 1605 and 1635 cm- 1. As can be seen

in Figure 5, heating a preoxidized sample of PVP/Pt (5a) in

flowing H2/N2 at 90 °C resulted in an intensity decrease of the

Cd O band (5b). However, after subsequent heating of the same

sample in air or pure O2, the carbonyl line intensity increased

again (Figure 5c). The intensities of the C- H stretch and Cd
O first overtone are also sensitive to redox treatment (Figure

6). The relative changes of resonance Raman line intensities of

PVP/Pt are summarized in Table 1. Heating PVP/Pt at 150 °C

in N2 did not affect the spectrum. Redox treatments were

reversible, although the intensity of Raman lines of both reduced

and oxidized samples gradually increased (with the exception

of the peak at 1605 cm- 1, see below). This suggests that the

structure of the capping PVP becomes denser after high-

temperature treatment as a result of PVP cross-linking, thereby

increasing the number of contacts between adjacent pyrrolidone

rings at the Pt surface. It is of interest that the shape of the

carbonyl line has a doublet structure with components at 1605

cm- 1 and 1635 cm- 1: the origin of these lines may be related

to the existence of two different Pt surface sites that may result

in two types of Ptr Od C bonds with different carbonyl

stretches. The lack of complete recovery of the 1605 cm- 1 band

upon reoxidation indicates that this bonding mode is only

partially regained. However, an increase of the intensity at 1605

cm- 1 was induced by sonication of the PVP/Pt sample in ethanol

for 15 min at 150 W power (Figure 7). We can only speculate

on the reason for the intensity increase of the peak at 1605 cm- 1

by this procedure, which includes the possibility of removal of

residual surface species from the redox-treated Pt nanoparticles.

Effect of Reduction and Oxidation on UV- Raman Spec-
tra of PVP/Rh. The UV- Raman spectrum of PVP/Rh exhibits

strong lines at 1590 and 1645 cm- 1, while the FTIR spectrum

shows only a single broad band centered at 1684 cm- 1 (Figure

8). No noticeable differences were detected in the Raman spectra

for Rh nanoparticles of varying shapes (cuboctahedra or

SCHEME 2: Model for the PVP/Pt Interaction in
Reduced and Oxidized States

Figure 5. The effect of consecutive redox treatment of PVP/Pt on the
intensity of the carbonyl line: (a) initial sample; (b) reduction of initial
sample under flow of H2/N2 (5% H2) at 90 °C for 40 min; (c)
consecutive oxidation in air at 90 °C for 15 min.

Figure 6. Effect of reduction of PVP/Pt on Raman intensities of the
C- H stretch and first Cd O overtone: (a) initial (preoxidized) sample
of PVP/Pt; (b) after reduction in H2/N2 flow at 90 °C for 40 min.

TABLE 1: Intensities of Resonance Raman Bands of
PVP/Pt Attributed to Carbonyl-Stretching Vibrations after
Consecutive Redox Treatment in H2, O2, and N2

oxidation state integral intensity Cd O consecutive treatments

1 ox 100 initial in air, 25 °C
2 red 65 flow H2/N2 (5% H2)

90 °C for 40 min
3 ox 110 air, 90 °C for 15 min
4 red 90 flow H2/N2 (5% H2)

130 °C for 20 min
5 ox 120 air, 90 °C for 50 min

6a neutral 100 flow N2

150 °C for 30 min

a Initial sample of PVP/Pt (1) was heated in N2 flow.

Interaction of Poly(vinylpyrrolidone) J. Phys. Chem. C, Vol. 111, No. 17, 2007 6291
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Figure 18 Pyrrolidone bonding to Pt surface as a bridging ligand (courtesy of Borodko et al. [2]) 

 

The resulting bond with PVP was much stronger and not as likely to break, as in the case 

of the monodentate ligand involving the lone pair from the carbonyl group exclusively. By virtue 

of its interaction with Pt, the PVP degrades much easier than it does in the pure state [101]. It is 

this decomposition process that promotes the availability of lone pairs which, then bind through 

monodentate and bidentate ligands to the Pt surface.  The progression of the degradation process 

propels the availability of more lone pairs for interaction with the Pt surface until a saturation 

point when there are no more sites available for interaction.  In the current work, which was the 

subject of one of our publications [50] we correlate the phenomena observed by Borodko et al. 

with discrete features of the cyclic voltammograms generated. Reduced Pt species are generated 

during the forward (oxidation) half of the cycle. As oxygen evolves and the potential is 

subsequently switched to reduction, the binding of functional groups from the decomposing PVP 

begins. Equations 9 – 16 illustrate the progression and cycling for the generation of different 

species during the cyclic voltammogram as a function of sweep voltage. The manifestation of the 

increased current density owing the binding of PVP with the Pt surface is most evident in the 

which may be assigned to a shifted carbonyl stretch because of

the presence of the amide functional group (in addition to the

expected nonbound carbonyl stretch at 1664 cm- 1). A charge-

transfer interaction between a moderate electron acceptor such

as Al(III) and an electron lone pair donor such as a carbonyl

group results in a red shift in the Cd O stretch to 1600 cm- 1.

The ratio of peak intensities of the CH2 bending and carbonyl-

stretching modes observed is typical for “normal” Raman

(Figure 13A), and no intensity increase was observed for the

first overtone of Cd O (Figure 13B). This provides evidence

that the resonance Raman spectrum of PVP/Al was detected

but without influence of chemically enhanced SERS. The FTIR

spectrum of PVP/Al does not have any new additional bands

when compared to pure PVP. In air, unprotected aluminum foil

has a protective, nonreducible Al2O3 surface layer with an

intrinsic thickness of approximately 2.5 nm.19 This underlines

the high sensitivity of UV- Raman spectroscopy in probing the

nature of the chemical bond between an amide group chemi-

sorbed to Pt or Rh nanoparticles on Al foil. The number and

position of carbonyl lines depends on the relative strength of

bonding and the type of interaction with the metal surface, singly

bonded or bridging. The carbonyl stretch frequencies are

summarized in Table 2.

An essential feature is the apparent influence of conductive

electrons on the intensity increase that is observed for PVP

Raman lines associated with chromophoric groups adsorbed on

the metal surface. In the case of PVP/Pt and PVP/Rh, UV-
Raman spectroscopy has detected selective enhancement of line

intensities for amide vibrations that may be attributed to both

the resonance Raman effect and SERS-CT (charge-transfer)

enhancement. A SERS chemical enhancement is due to electron

charge transfer between an amide group and the metal surface

atoms, as well as involvement of metallic electrons in the

Mr Od C bond. This gives rise to polarizability that is associ-

ated with the Cd O bond. However, in the case of PVP adsorbed

on Al foil with a native-insulating layer of Al2O3 (which acts

as a barrier for participation of metallic electrons), only the

normal resonance Raman effect was observed. Figure 14A

schematically depicts three studied systems with monodentate

structure: (I) PVP/Pt with a monolayer of PtO, which may be

easy reduced; (II) PVP/Rh with a thicker RhOx layer that may

also be reduced; and (III) PVP/Al with nonreducible oxide,

which completely screens interactions between adsorbed amide

groups of PVP and conductive electrons of aluminum. The UV-
Raman spectrum of PVP adsorbed on Pt and Rh nanoparticles

extended the number of SERS systems in which the contribu-

tions of electromagnetic enhancement is negligible.20 Figure 14,

panel B (reproduced from a scheme by Campion and Kamb-

hampati)21 emphasizes the role of conductive electrons in

chemically enhanced Raman lines attributed to the chromophoric

group adsorbed on a metallic surface. For PVP/Pt and PVP/

SCHEME 3: Proposed Mechanism for Degradation of
PVP Polymer to Yield Bridging Pyrrolidone Monomer
Moieties and Unsaturated Polymer Backbone Groups

Figure 13. UV- Raman spectra of PVP layers with different thickness
deposited on Al foil. The thickness of PVP layers decreases from i to
iii. The ratio of PVP thickness for samples i and iii is about 102. For
the Raman spectra of a thin PVP layer on Al foil, a new red-shifted
line was observed at 1600 cm- 1 (A) but no visible changes were
detected in the C- H stretch region (B).

TABLE 2: Carbonyl Stretch Frequencies (cm- 1) of Pure
PVP, PVP/Pt, PVP/Rh, and PVP/Al

monodentate bridging free

PVP 1664
PVP/Pt 1605 1635 1664
PVP/Rh 1590 1645 1664
PVP/Al 1600 1664

Figure 14. Illustrated effect of the dielectric barrier on CT-SERS
spectra of PVP adsorbed on Pt, Rh, and Al surfaces. (A) Schematic
picture of PVP/Pt, PVP/Rh, and PVP/Al interface structures with oxide
layers. (B) Energy-level diagram for a molecule adsorbed on metal
surface and possible charge-transfer excitation, showing involvement
of conductive electrons in resonance Raman.21

6294 J. Phys. Chem. C, Vol. 111, No. 17, 2007 Borodko et al.
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HOR of the reductive half of the cycle where the differences in current density are most evident 

(see figure 13 & 16). Borodko et al’s evidence suggests that such dramatic increases in the 

current density are not likely to be as evident, like the CVs in this work demonstrate, during the 

oxidative process where the Pt species is being converted to Pt
2+

.  

 

Oxidative half of cycle 

       Pt-H + e
-
 (9) 

                                                                Pt-H → Pt-OH (10) 

                                                                 Pt-OH → Pt-O (11) 

  Pt-O → Pt
2+

 +O2 (g) (12) 

  

Reductive half of cycle 

O2 (g)  + Pt
2+

 → Pt-O (13) 

                                                          Pt-O → Pt-OH (14) 

                                                         Pt-OH → Pt-H (15) 

Pt-H + e
-  

→       +H2(g) (16) 

 

 While the number of CVs run for each experiment was restricted to 200 in number, 

preliminary work involved running many more cycles. However, saturation in the measured 

current density was observed in the vicinity of 200 cycles. Indeed, visual inspection of figures 13 

and figure 14 will reveal that the difference between cycle 150 and cycle 200 is minimally 

discernible. This same point of saturation was also arrived at during thermal degradation 

experiments by Borodko et al. [101] of PVP on Rh  and Pt NPs. Beyond the saturation of 
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available sites, the explanation for this phenomenon has also been attributed to observed 

interactions featuring capped metallic NPs with monodentate e.g. (C=O:) and bidentate e.g. 

(C=O: / C2N:) ligand species which are chemisorbed on the metal surface [102].  

3.4 Conclusions 

It was observed that CV scans with PVP capped Pt NPs resulted in higher current density 

measurements.  This observation suggests that in addition to the corrosion resistant properties 

that PVP can provide for sub-10nm NPs, the incorporation of PVP may in fact improve the 

performance of low temperature PEMFCs. The observations made in this work suggest that the 

presence of PVP in platinum nanoparticle syntheses may improve Pt nanoparticle stability and, 

by inference, their electrocatalytic activity after many electrocatalytic cycles. A model based on 

the strong interactions between the surface of the Pt particles and the monodentate and bidentate 

ligand groups is proposed. As a result, it is anticipated that the incorporation of PVP, and 

possibly other capping agents, may in fact lead to improved PEMFC performance through 

enhanced stability under application conditions, which could accelerate the commercial 

availability of PEMFCs. 
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CHAPTER 4:  PALLADIUM MONOMETALLIC SHAPE EFFECTS 

 

 

4.1 Introduction 

 

Major factors limiting the mass implementation of Proton Exchange Membrane Fuel 

Cells (PEMFCs) include the elucidation of a cheap yet effective catalyst to replace platinum 

supported on carbon [103-105] and the ability to safely store hydrogen “on-board” automobiles, 

which incorporate PEMFCs. Interestingly, these are two properties of Pd that have made it a 

keen material of interest for PEMFCs 

 By virtue of its periodic proximity as well as many computational metallic surface 

studies,[31, 106] Pd has been shown to be an ideal material for incorporation in PEMFCs. 

Furthermore, currently at a fraction of the price of Pt, it also presents itself as a commercially 

viable option for commercial scale implementation. A significant body of literature has been 

dedicated to reducing the amount of Pt used in PEMFCs by combining Pt with other materials or 

modifying its support to improve performance.  A newer and growing body of literature however 

seeks to replace Pt altogether and, through advances in synthetic chemistry, tailor the properties 

of new NPs to improve electrocatalytic activity. The progress of this work has been guided 

through advances in theoretical studies, particularly DFT [107-109], which have been essential in 

proposing surfaces that may show improved catalytic activity for a given reaction pathway. Of 

particular interest, is the work of Norkov et. al [110] which highlights the similarity in activity 

towards the oxygen reduction reaction on the (111) surface for Pt and Pd surfaces relative to 

other transition metal surfaces that were studied as well. A ranking consisting of the activity of 
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the different metal surfaces as a function of their oxygen binding energy was made. Metals 

closest to the peak of the volcano had the best activities, which were characterized by an ideal 

balance between the materials propensity to react and / or remain inert. In another study, 

Markovic et al. [111] also showed that, at least for a monometallic Pt surface the ORR activity 

varied in the order;  (110) > (100) > (111).  This trend suggests that more kinetically controlled 

morphologies of NPs would tend towards better electrocatalytic activity than their 

thermodynamically driven variants. Recent synthetic chemistry efforts have shown that it is 

possible to generate a number of innovative morphologies based on monometallic or bimetallic 

compositions by controlling different kinetic factors. The resulting shapes, tailored to feature one 

or more sets of lattice planes over the other, would then reveal activity trends that promote a 

given reaction based on the extent to which the enclosed lattice facets tend to facilitate that 

reaction. The paper by Lim et al. [43] in Science is a great example which takes advantage of the 

bimetallic properties of a relatively new shape – PdPt dendrites - and illustrates how they 

demonstrate enhanced ORR activity. In this work, we explored the effect of isolating 

monometallic Pd dendrite properties and compared them with those from Pd cubes using an 

aqueous synthesis technique described in chapter two. The electrocatalytic properties of the two 

shapes were also studied and are presented in this chapter. Trends observed between the 

interaction of hydrogen and the Pd surface during cyclic voltammetry experiments led us to 

compliment electrocatalysis with traditional catalytic experiments as well based on Pd’s inherent 

H2-storage properties. 

Similar to other precious metals, Pd can absorb hydrogen. However, the absorption 

capacity of Pd exceeds that of other materials. [112] In fact, Pd is known to absorb up to at least 

600 times its volume in hydrogen and this property has made it a model system for hydrogen 
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storage studies. [112, 113] After dissociation of the hydrogen molecule to hydrogen atoms, the 

Pd lattice becomes permeable to a fraction of the said ions, which then preferentially lodge 

within the octahedral sites of the Pd metal sub-surface. [114] The present work highlights the 

impact of monometallic Pd nanoparticle morphology, which can lead to enhanced hydrogen 

storage properties, and is a novel contribution to the hydrogen storage field. In this contribution, 

an enhanced ability to store hydrogen is demonstrated for Pd nanocubes over polycrystalline Pd 

dendrites and the differences are discussed through results from a series of characterization and 

testing techniques. Ethylene hydrogenation, a structure insensitive reaction,[89, 114-119] 

indicated a higher external surface of the dendrites, as compared to the cubes, which agreed with 

the expectations for the structures from TEM imaging. Cyclic voltammetry, as well as static 

hydrogen sorption experiments, showed that Pd nanocubes exhibited better hydrogen sorption 

capacity than Pd dendrite nanoparticles of the same size. This observation was attributed to the 

facile formation of PdH phases for the Pd nanocubes due to its more open crystal surface 

structure as compared to the Pd dendrites.  It is postulated that adsorbed hydrogen atoms on the 

Pd surface lodge into the octahedral sites and this rate is proportional to the atomic spacing of the 

surface plane. The morphology of the nanocubes enhances the interstitial diffusion into the Pd 

lattice and, consequently, lattice expansion, which combined are proposed as the source of the 

hydrogen storage enhancement for the (100)-rich nanocubes as compared to the polycrystalline 

dendrites.  

4.2 Electrochemistry Experiments 

Samples were prepared by making subsequent aliquot depositions of the Pd suspension 

on the GCE. The nature of the suspension required each aliquot to be dry before a subsequent 

one was added to ensure that all material was deposited on the GCE amorphous surface. 
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Furthermore, a drop of Nafion
® 

117 solution, deposited on the dried Pd-nanoparticle film acted 

as a binding agent as well as a proton conduction facilitator.  

4.2.1 Cyclic Voltammetry 

Prior to each experiment, the electrolyte solution 100mL of 0.1M HClO4 (Sigma Aldrich) 

was purged for 30 minutes with Argon gas to remove gaseous impurities. After 30 minutes, the 

modified working electrode was lowered into the electrochemical cell. Cleaning cycles were run 

between (-0.244V vs. SCE) and (0.356V vs. SCE) for 20 cycles at 100mVs
-1

 under Ar. This was 

followed by a series of 10 cycles at 20mVs
-1 

cycled between (-0.244V vs. SCE) and (0.956V vs. 

SCE) to generate a preliminary estimation of the ECSA. After the CV experiment and still under 

Ar, an ORR curve was recorded at 3600rpm and 10mVs
-1

 before switching the gas flow to O2. 

4.2.2 Oxygen Reduction Reaction 

ORR experiments consisted of voltage sweeps from (0.956 vs. SCE) to (-0.244 vs. SCE) 

at 10mVs
-1. 

Sweep experiments were started after flowing O2 for at least 30 minutes. A series of 

six different ORR curves were recorded at 100, 400, 900, 1600, 2500 and 3600rpm respectively 

ORR. In order to account for the capacitive current due to the electrolyte, the background sweep 

scan was subtracted from each of the ORR curves to elucidate the ORR curve that was attributed 

to the modified working electrode exclusively. CV and ORR and data were normalized by the 

geometric surface area of the GCE and the resulting current density was reported as a function of 

the sweep voltage. 

4.3 Catalyst Studies  

For samples prepared for H2-sorption and ethylene hydrogenation, enough silica (Cab-O-

Sil; Sigma-Aldrich) was added to the total suspension of Pd nanoparticles to achieve a 1 wt. % 

silica-supported Pd (Pd/SiO2) system. The resulting materials were then dried before use. A 
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similar procedure was used for the samples prepared for X-ray absorption except that the Pd 

loading was 2%.  

4.3.1 Ethylene Hydrogenation 

 Ethylene hydrogenation experiments were performed on 1% Pd/SiO2 dendrites and cubes 

using an in-house reactor system consisting of 8 mass flow controllers (Alicat) connected to a 

Perkin Elmer AutoSystem Gas Chromatograph for gas analysis. The powder material (~8 mg) 

was pre-treated in helium at 50sccm and subsequently reduced in 10 %H2/He (50 sccm) by 

ramping-up the temperature to 150
o
C at a rate of 10

o
C/min with a 30-minute holding period. The 

system was allowed to stabilize and the temperature of the reactor cooled to below 45
o
C. At this 

point, the feed gas composition was modified to include ethylene for a final gas composition of 

50 sccm He: 25sccm H2: 2.5sccm C2H4. Additionally, the temperature of the reactor was slowly 

ramped up at 0.8°C/min to record chromatograms at different temperatures between 50°C and 

75°C 

4.3.2 H2 Sorption 

 Using Quantachrome’s Autosorb iQ, sorption isotherms were recorded for 1% silica-

supported Pd nanocubes and dendrites. Approximately 750 mg of each material was trapped in a 

sorption cell using glass wool (Ohio Valley Specialty Company). Each sample was purged in 

helium at 120°C and subsequently reduced in hydrogen as the temperature was ramped up to 

250°C at 20°/min and held for two hours. Then, the cell was evacuated of gas and force cooled to 

40°C. At this point the pre-treatment was complete and the analysis was performed using 

Hydrogen as analysis gas at 40mmHg intervals between pressures of 240 mm Hg and 560 mm 

Hg. 
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4.3.3 X-RAY Absorption Spectroscopy 

X-ray absorption spectroscopy (XAS) studies were performed at the DuPont-

Northwestern-Dow (DND) Collaborative Access Team (CAT) beamline 5-BM-D (BM = 

bending magnet, http://www.dnd.aps.anl.gov/) at the Advanced Photon Source of Argonne 

National Laboratory. For these experiments, the storage ring energy and circulating current were 

7.0 GeV and 100.6 mA, respectively. X-rays were selected using a Si(111) monochromator. For 

acquisition of the XAS data, catalyst powders (a mass ~ 50 mg) were finely ground and pressed 

onto 13 mm diameter pellets using a Carver press operated at 12,500 psi for 20 s. Pellet 

thicknesses were adjusted to obtain a linear absorption coefficient near 1. Spectra were collected 

in transmission mode at the Pd K absorption edge (24350 eV) under ambient conditions. 

Energies were scanned from 150 eV before to 30 eV before the edge in 10 eV steps (background 

region) and then to 975 eV (representing k = 16 Å
-1

) after the edge in 2 eV steps (pre-edge/edge 

region). The absorption was measured using ionization chambers before and after the sample. 

Following the second ionization chamber, the Pd foil and a third ionization chamber were 

positioned to monitor this reference examined simultaneously. Multiple scans (typically 3 per 

sample) were obtained to improve the signal-to-noise ratio. Merging of individual scans and data 

reduction were performed with the Athena software package [120, 121] . The background region 

(-150 to -50 eV before the edge) was extrapolated and subtracted from the data. Edge energies 

were selected as energy yielding the maximum absorption derivative. Spectra were normalized 

with a polynomial spleen operation by the absorption over the k range of 2 to 14 Å
-1

. Finally, 

the spectra were Fourier transformed with a Hanning window from k-space into R-space over the 

k range of 3 to 14 Å
-1

. The data range in k-space was k of 3 to 14 Å
-1 

for the Fourier 

Transform in R-space. Fittings were performed in R-space over R of 1 to 3.5 Å (for 17 
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independent points) using k-weights of 1, 2, and 3. The Pd-Pd path was used for phase 

corrections. Coordination numbers (CN), interatomic distances between an absorber and 

backscatter pair (R), mean-square displacements in the distribution of interatomic distances (
2
), 

amplitude reduction factors (o
2
), and inner potential corrections (Eo), were the parameters 

determined from modeling the EXAFS data.  Coordination numbers were determined by 

approximating the amplitude reduction factor of the catalyst samples to those obtained by the 

reference materials. Only fits with reasonable values for Eo (less than ~|10 eV|) and 
2
 (less 

than ~0.02 Å
2
) were considered. Coordination numbers were optimized to obtain an amplitude 

reduction factor (o
2
) similar as to the values obtained above for the specific absorber-

backscatter pairs in reference materials. Uncertainty in coordination numbers were 0.2 for Pd-Pd 

spacings. R-factors less than ~2%, as obtained for the reference materials, were generally used to 

signify a good fit. 

4.4 Results and Discussion 

 

4.4.1 Synthesis 

 As can be seen in figure 5 and 6 (Chapter 2), Pd cubes and dendrites were synthesized 

using the same set of ingredients. The difference between the two batches of nanoparticles was 

the order in which the surfactant material (CTAB) and the reductant material (L-Ascorbic Acid) 

were added to the reactor vessel. An initial interaction occurs between the Bromide
 
ion from 

CTAB and the Palladium ion from K2PdCl4 to form the PdBr4
2 

complex which is more stable 

than PdCl4
2-

. Additionally, this bromide complex preferentially prompts formation along the 

(111) and (100) facets, which result in the cubes recorded upon addition of the reductant, L-

Ascorbic Acid.  In contrast, by switching the reagent addition sequence, the absence of the 

templating and strongly binding bromide, resulted in faster nucleation and growth kinetics which 
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was then halted by the addition of the stabilizing agent, i.e. CTAB. The result of this was the 

formation of Pd dendrites. The last two ingredients were added within ten seconds of each other, 

ensuring uniform and homogeneous NPs according to the La Mer model [80].  Still preliminary 

syntheses resulted in larger dendrites than cubes. To address the size difference, the 

concentration of Pd precursor was divided into two batches (unlike for the cubic synthesis 

sequence) and this modification would result in dendrite sizes that were close in size to those of 

Pd cubes. 

 Pd NP size determination was done via visual inspection coupled with Image J ® 

confirmed with the Full Width Half Max (FWHM) estimation of the nanoparticle sizes, from 

XRD patterns, which suggested a similarity in size notwithstanding shape. (figure 19). Average 

Pd NP size distribution was between 20 and 30 with average crystallite sizes for Pd cubes and 

dendrites recorded as 24.7 nm and 21.1nm respectively.  

 The observations made here, were also confirmed via X-Ray absorption (XAS) 

experiments. Results (figure 20) revealed similar interatomic bond distance measurements as 

well as coordination numbers, which are both consistent with typical values reported for Pd. 

[120, 121] Furthermore, the matching XANES patterns highlight the similarity in oxidation state 

and size that exists between both shapes, which is also observed. Furthermore, the matching 

XANES patterns highlight the similarity in oxidation state and size that exists between both 

shapes, which is also observed.  
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Figure 19 X-Ray Diffraction patterns for Palladium cubes and dendrites compared to JCPDS 

reference. 

 

4.4.2 Cyclic Voltammetry 

 A comparison between the Pd cubes and Pd dendrites was obtained by comparing ECSA 

and stability trends. It was observed that despite running cycles aimed at cleaning the modified 

WE surface prior to each experiment, the defining features of the CV curves did not become 

uncompromisingly evident until after at least an hour of continuous running. For this reason, 

ECSA values were estimated by comparing the integrated value of the hydrogen evolution peak 

with that of the palladium oxide peak, both on the cathodic sweep of the cyclic voltammogram. 

Pd cubes consistently exhibited higher ECSA values than Pd dendrites. This was despite the 

additional apparent surface area that the Pd dendrites presented by virtue of the flower petal-like 
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fringes on the periphery of the Pd dendrites. After 3.5 hours of continuous cycling, the Pd cubes 

demonstrated a 50% higher value than the dendrites. This trend was consistent with every 

subsequent pair of cube and dendrite batches that was evaluated simultaneously. The observed 

trend was attributed to the Pd-H interaction, which seems to vary as a function of the Pd NP 

shape. This observation was further examined with an evaluation of the ECSA loss as a function 

of time (or cycle number). It was determined that in the evaluation of the ECSA in the HOR, the 

ECSA increased within the first 90 minutes of cycling. 

 

 

Figure 20 X-ray absorption, the (a) XANES and (b) EXAFS regions, of Pd particles supported 

on carbon.  

 

 

Table 3 EXAFS Fittings of the shape controlled Pd particles deposited onto silica (2wt% Pd) 
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Figure 21 Comparison of typical cyclic voltammograms corresponding to Pd nanocubes and dendrites. CVs were recorded at 1600 

rpm and a scan rate of 20mV/s after 210 minutes of continuous cycling. 
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 Subsequently, the ECSA followed a linear decrease in value over time. This finding 

presents credible reasons to question the accuracy of HOR ECSA use as a means of determining 

ECSA values and has become a point of recent inquiry. [122] In figures 22 and 24 we compare 

the integrated values of the HOR and oxide peaks. We also compare the evaluated ECSA for two 

batches of experiments in each case. The evaluated ECSA values for both experiments were 

within a 5% margin of error from each other while the Pd dendrites were within a 10% margin of 

error of each other.  While like most ORR electrocatalysts, our Pd nanocubes and dendrites were 

physically immobilized and as such an ability to transfer the same amount of material to the GCE 

was critical to accuracy. Furthermore the larger margin of error is explained by the fact that 

dendrites, which manifested twinning, had to be generated in smaller batches still, and 

subsequently combined to generate the desired size range and minimize twinning.  

 The results we observe suggest that the interaction between Pd and H, even in 

electrochemical environments is credible enough to warrant study and, in the latter part of this 

chapter, our efforts in that regard are discussed.  Furthermore it brings to light the potential of the 

oxide peak to serve as a more accurate means of measuring ECSA than the HOR especially since 

the nature of the Pd – O interaction is limited to the Pd metal surface and not the sub-surface. 

4.4.3 Oxygen Reduction Reaction 

 An essential component of electrocatalytic studies is the elucidation of the preferred 

pathway that the oxygen reduction reaction process adopts. This would inform the use of either 

the RDE or the RRDE (shown in scheme 2.2a), which employ a 4-electron mechanism or a 2-

electron mechanism respectively.  
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Figure 22 In red: Comparison of two batches of Pd Cube syntheses reproduced to within 5% of each other; black dashed:  

integrated value of the PdO peak on the cathodic sweep of the voltammogram; solid black: integrated HOR peak  
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Figure 23 A visual depiction of the reduction in the current density as a function of surface area for Pd cubes over time (cycle 

number). CVs were recorded at 10mV/s and a 2mV step size.  
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Figure 24 In red: Comparison of two batches of Pd dendrites syntheses reproduced to within 10% of each other;  

black dashed: integrated value of the PdO peak on the cathodic sweep of the voltammogram; solid black: integrated HOR peak 
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Figure 25 A visual depiction of the reduction in the current density as a function of surface area for Pd dendrites over time (cycle 

number). CVs were recorded at 10mV/s and a 2mV step size.  
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 A series of linear sweep experiment batches were performed with the different modified 

WEs as shown in figures 26 and 28. From this information, Koutecky-Levich plots were also 

generated for each respective series of ORR curves. Typical ORR results are shown in figures 26 

and 28 and their corresponding Koutecky-Levich plots are shown in figures 27 and 29. It will be 

noted that ORR curves obtained at lower rotation speeds have a propensity to introduce more 

noise, since the dynamic nature of the electrochemical reactor becomes accentuated and so, 

where appropriate, were omitted. 

 The Koutecky-Levich plots were generated using a series of six different potential values 

varying from 0.05 to 0.30 in increments of 0.05.  The inverse of the limiting current (iL
-1

), 

obtained at these potential values was plotted as a function of the inverse square root of the 

rotation speed (ω
-0.5

) to obtain the series of linear plots shown in figures 27 and 29. From the 

slope of the Koutecky-Levich plots, equal to the constant B detailed in equations (5) and (6) from 

chapter two, the number of electrons participating in the reduction of oxygen can be determined. 

Averaged over the six voltages reported, n values for the cubes and dendrites were 3.69 ± 0.17 

and 4.32 ± 0.67 electrons respectively. These results suggest that the oxygen reduction process 

for the Pd cubes and dendrites is overwhelmingly driven by the 4 –electron pathway or the direct 

reduction of O2 to H2O as indicated by equation (1) in chapter two. However, the four-electron 

pathway was favored by the dendrites more so than the cubes as evidenced by a higher average n 

value. In general, the more the potential tended towards a higher positive value, the more it 

tended towards the four-electron pathway for oxygen reduction and the more it tended towards 

negative potential values, the more it tended towards the two electron pathway. 
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Figure 26 Oxygen Reduction Reaction curves obtained for Palladium nanocubes at different rotation speeds.  

The scans were recorded at a scan rate of 10mV/s and a step size of 2mV. 
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Figure 27 Koutecky-Levich plot corresponding to the series of ORR curves in 4.4a. 
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Table 4 Summary of Koutecky-Levich Parameters (Pd Cubes) 

Pd Cubes iL
-1

(V), (mAcm
-2

) 

ω, rpm 1/ω
0.5

  0.05v 0.10v 0.15v 0.20v 0.25v 0.30v 

100 0.1 0.92 0.87 0.88 0.91 0.90 0.79 

400 0.05 0.64 0.64 0.64 0.64 0.63 0.61 

900 
0.03 

0.51 0.51 0.52 0.52 0.51 0.50 

1600 0.025 0.45 0.45 0.45 0.45 0.45 0.44 

2500 0.02 0.41 0.41 0.41 0.41 0.41 0.40 

3600 
0.017 

0.38 0.38 0.38 0.38 0.38 0.37 

No. of electrons, n 
3.54 3.57 3.58 3.68 3.79 3.99 
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Figure 28 Oxygen Reduction Reaction curves obtained for Palladium nanodendrites at different rotation speeds.  

The scans were recorded at a scan rate of 10mV/s and a step size of 2mV. 
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Figure 29 Koutecky-Levich plot corresponding to the series of ORR curves in 4.4c. 
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Table 5 Summary of typical Koutecky-Levich Parameters (Pd Dendrites) 

 

Pd Dendrites iL
-1

(V), (mAcm
-2

) 

ω, rpm 1/ω
0.5

 0.05v 0.10v 0.15v 0.20v 0.25v 0.30v 

100 0.1 0.86 0.83 0.81 0.74 0.76 0.74 

400 0.05 0.55 0.56 0.56 0.56 0.56 0.54 

900 

0.033 

0.43 0.44 0.44 0.44 0.44 0.43 

1600 0.025 0.37 0.38 0.38 0.38 0.38 0.38 

2500 0.02 0.34 0.34 0.34 0.35 0.35 0.34 

3600 

0.017 

0.32 0.33 0.33 0.34 0.35 0.34 

No. of electrons, n 3.90 3.96 3.97 4.14 4.26 5.66 
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Thus, it is presumed from this information that the two-electron and four-electron pathways are 

in fact present but with the latter dominating over the former.  

 A typical comparison of the activity as a function of the NP revealed a very small 

difference between the onset potential of the different shapes of Pd NPs as shown in figure 4.5. 

The mass activity of the Pd NPs was compared at 0.5V. The comparison showed that the cubes 

had a mass activity of 0.663mAcm
-2

 compared to a mass activity of 0.306mAcm
-2

 for the Pd 

dendrites at the same potential. The Pd cubes and dendrites displayed similar onset potentials at 

0.54V (0.784 vs. SHE). Mass activities differed by 10mV at the E0.5 point of the mixed kinetic-

diffusion portion of the curve. This result agrees with CV results, which showed Pd cubes had a 

higher ECSA, which in turn facilitates the easier reduction of oxygen easier, i.e. at a higher onset 

potential.  

4.4.4 Ethylene Hydrogenation & H2 Sorption Studies 

For ethylene hydrogenation (Figure 4.6), similar trends for both Pd nanoparticle shapes 

were obtained and both profiles indicated that an Arrhenius-type kinetic model was sufficient to 

describe the effect of temperature. An a priori visual inspection of the morphology for the two 

shapes suggested that the dendrite-shaped nanoparticles would exhibit better catalytic properties 

by virtue of their pronounced branches, which provide additional surface area per mass. Indeed, 

Pd dendrites consistently exhibited a higher conversion per mass as a function of temperature. 

Since the reaction is considered structure insensitive, this difference was attributed to the 

available Pd surface for catalysis. 
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Figure 30 A comparison of the typical ORR profile recorded from Pd cubes and dendrites. ORR 

curves were recorded at 1600 rpm and a scan rate of 10mV.  

 

 

Static H2 sorption measurements (Figure 4.7) showed that the amount of sorbed H2 per 

mass of Pd was higher for Pd nanocubes than it was for the Pd dendrites. In other words, the 

same trend that was observed with CV experiments was observed here as well (Figure 4.2). 

Additionally, the amount of hydrogen sorbed to the Pd nanocubes under electrochemical 

conditions was at least twice that for the Pd dendrites.  Despite this difference, calculated H:Pd 

ratios revealed that there were approximately 0.0276 H atoms for every Pd atom. This ratio 

suggests that the two phases of the PdH species are present in both sets of experiments. 
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Figure 31 Ethylene hydrogenation fractional conversion as a function of temperature for Pd dendrites and cubes. 
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Figure 32 Comparison of H2 sorption results for Pd dendrites and cubes. 
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The differences observed in interaction between the Pd nanoparticles and hydrogen, we 

propose, are caused by the differences in morphology that exist between the two shapes of Pd 

nanoparticles. In general, the interaction between the Pd nanoparticles and hydrogen atoms falls 

under one of two categories. Low concentrations of PdH or the α-phase consist of concentrations 

up to 0.015 H atoms per Pd atom. The β phase co-exists with the α-phase between 0.015H and 

0.6H. [123] Beyond this concentration, the β phase species exists exclusively. The evolution of 

the β phase is accompanied by an expansion of the Pd fcc lattice [123]. In light of this, an 

orientation preferentially exposing the (100) plane, more prevalent in Pd cubes, logically would 

facilitate interstitial diffusion and interaction of hydrogen atoms with surface and sub-surface Pd 

sites.  

The results presented are consistent with the behavior of Pd-hydrogen systems. This 

difference was manifested by a higher prevalence of the (100) planes in Pd nanocubes relative to 

Pd dendrites.  A prevalence of (100) facets in Pd nanocubes would facilitate a flux of hydrogen 

atoms into the sub-surface of the Pd material ensures an improved coverage of hydrogen on the 

Pd material. This finding agrees with the trends showed in H2 sorption measurements under 

electrochemical conditions discussed earlier which both showed a better interaction of hydrogen 

with the Pd nanocubes.  

4.5 Conclusions 

In this work, the difference in NP design was used to study the electrocatalytic properties 

of different shapes of Pd NPs. Based on our results and the apparent interaction of Pd with H2, 

catalytic experiments were performed to elucidate differences in the interaction of H2 the 

different shapes of Pd NPs. Our findings indicate that the electrochemical interaction of Pd with 

H resulted in an ORR activity difference that was only slightly higher for Pd cubes. A Koutecky-
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Levich analysis showed that the 4-electron pathway predominated for both shapes of Pd NPs 

although the Pd dendrites had a higher average number of electrons when measured as a function 

of potential. Also, the non-linear trend that was observed in the HOR ECSA measurements 

compared with the linear trend observed in the Oxide peak integration brings into question, the 

confidence in the accuracy of the HOR ECSA measurement. Furthermore, it suggests that the 

oxide peak might be a better reference for ECSA determination, since it demonstrated a linear 

decreasing trend throughout the cyclic voltammetry experiment.   

Ethylene hydrogenation experiments favored dendrites, which showed a higher 

conversion. The results of this study demonstrated a strong impact of the role of Pd particle 

shape on the ability to store hydrogen within the Pd structure. Results obtained for experiments 

involving Pd nanocubes and dendrites showed that the prevalence of the (100)-lattice plane has 

an important influence on the facile sorption of hydrogen. This contribution provides insight into 

the design and application of varying shapes of Pd NPs for hydrogen storage by identifying 

structure-function relations for the ideal interactions in metal-hydrogen system. The results of 

this work indicate that the morphology and the prevalence of certain lattice planes in the first few 

layers of metallic material samples employed for hydrogen storage applications, could have an 

impact on the said material’s ability to store hydrogen.  
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CHAPTER 5: PALLADIUM-BASED BIMETALLIC NP STUDY 

 

 

5.1 Introduction 

 

 In this chapter, we extended our study of Pd based nanoparticles for low temperature fuel 

cell applications.  In the process, we adopted two different approaches for NP synthesis that are 

described in Chapter two. One approach took advantage of the ability to generate sub-5nm 

nanoparticles through a Dendrimer Encapsulated Synthesis techniques, that we also used for 

other applications within our group. [124, 125] This technique provides an efficient means of 

generating very small NPs with high surface area. In addition to traditional catalytic and bio-

inspired applications including the ones cited above. DENs have also been used to generate 

electrocatalysts for low temperature fuel cell applications. In this regard, the Crooks group at the 

University of Texas has published several journal articles on the subject. [35-37, 126] 

 The second approach for the synthesis of Pd based NPs, also described in Chapter 2, was 

inspired by the work of Chen et al. [39] Instead of monometallic Au nanocages however, work in 

our group  adapted this process to generate ca. 50nm Pd nanocages whose properties would be 

studied for bio-inspired catalytic applications. Details of the synthesis and characterization can 

be found in the published dissertation of Hokenek, S.[127] In both cases, a combination of Pd 

and Ag was used in different ratios in an effort to establish a trend that was a function of the 

material concentrations with the different compositions. 
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In the adaptation of these NPs for electrocatalytic applications, the goal of this work was 

to elucidate how ligand and geometric effects might play a role in the resulting electrocatalytic 

activity of the NPs under study. Indeed, ligand and geometric [45-47] effects could play an 

important role in improving the activity of bimetallic electrocatalysts [48]. Ligand effects rely on 

changing the electronic structure of the primary metal site [49] through which a favorable charge 

transfer is induced while geometric effects  as the name suggests, rely on factors including 

particle size, dispersion state and bond strain. 

 

Figure 33 A volcano plot based on DFT studies on the (111) plan of different transition metal 

surfaces. Picture adapted from Norskov et. al [31] 

 

 

This work was guided by the following two hypotheses which build on the modeling work 

proposed by Norskov et. al, summarized in figure 33 above. 

Hypothesis 1: Here-in, the influence of ligand effects will be inversely proportional to the 

oxygen binding energy of the bimetallic systems under consideration, with a more 

pronounced effect on left volcano branch Pd pairs. 

Hypothesis 2: The bimetallic pairs with low binding energies will favor oxygen reduction. 

By virtue of the lattice faces that favor O2 reduction, Pd-Ni, Pd-Pt nanocubes will have 
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lower binding energies than nanospheres, while for Pd-Ag, nanospheres will have lower 

binding energies than nanocubes 

5.2 Electrochemistry Experiments 

 

 A series of electrochemistry experiments, very similar to the ones in the previous 

chapters were adopted for the bimetallic study as well.  One difference however, was in the use 

of an alkaline environment in addition to the acidic environment to study the electrocatalytic 

properties of select bimetallic pairs.  In all, PdNi11 and PdAg11 DEN batches were studied. In 

addition, AgPd10-ACID, AgPd10-ALKALINE, AgPd6-ALKALINE nanocages with 5nm and 10nm Pd shells 

respectively were also studied. 

5.2.1 Cyclic Voltammetry 

The acid environment was prepared in a similar manner to that described in previous 

chapters. The alkaline environment was prepared using an electrolyte solution prepared from 

100mL 0.1M NaOH (aq) (Sigma Aldrich). A series of 20 cycles were run in the 0 to -0.8V range 

vs. SCE to establish a steady state curve. In all, 20 cycles at 100mVs
-1

 under Ar. After the CV 

experiment and still under Ar, an ORR curve was recorded at 3600rpm and 10mVs
-1

 before 

switching the gas flow to O2. 

5.2.2 Oxygen Reduction Reaction 

ORR experiments consisted of voltage sweeps from (0.0 vs. SCE) to (-0.8 vs. SCE) at 

10mVs
-1. 

Sweep experiments were started after flowing O2 for atleast 30 minutes. A series of six 

different ORR curves were recorded at 100, 400, 900, 1600, 2500 and 3600rpm respectively 

ORR In order to account for the capacitive current due to the electrolyte, the background sweep 

scan was subtracted from each of the ORR curves to elucidate the ORR curve that was attributed 

to the modified working electrode exclusively.  
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CV and ORR and data were normalized by the geometric surface area of the GCE and the 

resulting current density was reported as a function of the sweep voltage. 

5.3 Results & Discussion 

5.3.1 Pd-Ag Nanocage 

 In general, it was observed that the quality of the Cyclic Voltammogram (in acidic 

medium) depended directly on the Pd composition of the film. The higher the Pd concentration, 

the more defined the nature of the CV curve in the NP film. Indeed, despite the low ECSA, 

AgPd10 exhibited distinct features of the Pd cyclic voltammogram. However the suppressed 

HOR peak suggests the presence of a second material, Ag, may not be synergistic during the 

reduction process. In fact, a Koutecky-Levich analysis revealed an electron number, n, in excess 

of either pathway known to be adopted by the oxygen reduction process. Details of the analysis 

of the PdAg10 nanocages under acidic and alkaline media are provided in figures 34 - 36 as well 

as table 6. Under alkaline media, PdAg10, appears to be active although the activity was limited to 

the 2-electron pathway of oxygen reduction according to the Koutecky-Levich analysis.  It is 

proposed that the activity observed is due primarily to Ag, a good ORR catalyst under alkaline 

conditions [128, 129], especially since it has a lower binding energy for the OH than Pd. Still, 

the Ag-catalyzed ORR process, typically a 4-electron process, [128-130] seems to be hindered 

by the bimetallic nature of the NP film, which by virtue of the Pd shell thickness would obstruct 

access to the Ag surface. Indeed, in a similar process resulting in PdAg nanoboxes, Skrabalak et. 

al [131] describe the solid-solid interdiffusion and subsequent de-alloying typical of PtAg and 

PdAg systems. However, they explain, that unlike the PtAg, system, they observed a blocking to 

the pore formation that would result in the hollow core or nanocage resulting in PdAg alloys 

instead of nanoboxes. 
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Figure 34 Stability test of AgPd10 nanocages showing the change in current density / reduction in ECSA as a function of time. 
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Figure 35 Oxygen Reduction Reaction curves for AgPd10 in acidic media at different rotation speeds. The scans were recorded at a 

scan rate of 10mV/s and a step size of 2mV. 
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Figure 36 Koutecky-Levich Plot for AgPd10 Nanocages in acidic media. 
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Table 6 Summary of Koutecky-Levich Parameters (PdAg10) in acidic media 

 

AgPd10-ACID iL
-1

(V), (mAcm
-2

) 

ω, rpm 1/ω
0.5

 0.05v 0.10v 0.15v 0.20v 0.25v 0.30v 

100 0.1 6.33 6.41 6.62 6.80 6.85 7.14 

400 0.05 5.35 5.49 5.62 5.75 5.92 6.06 

900 

0.033 

4.76 4.85 4.98 5.13 5.26 5.41 

1600 0.025 4.39 4.48 4.61 4.74 4.88 5.05 

2500 0.02 4.08 4.18 4.31 4.44 4.57 4.72 

3600 

0.017 

3.92 4.07 4.22 4.39 4.55 4.72 

No. of electrons, n 0.65 0.64 0.65 0.66 0.65 0.66 
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Figure 37 Oxygen Reduction Reaction curves for PdAg10 in alkaline media at different rotation speeds. The scans  

were recorded at a scan rate of 10mV/s and a step size of 2mV. 
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Figure 38 Koutecky-Levich Plot for AgPd10 Nanocages in alkaline media. 
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Table 7 Summary of Koutecky-Levich Parameters (PdAg10) in alkaline media 

 

PdAg10-ALKALINE iL
-1

(V), (mAcm
-2

) 

ω, rpm 1/ω
0.5

 -0.75v -0.70v -0.65v -0.60v -0.55v -0.50v 

100 0.1 1.71 1.70 1.69 1.69 1.71 1.69 

400 0.05 1.28 1.28 1.28 1.28 1.30 1.29 

900 

0.033 

1.06 1.06 1.06 1.07 1.09 1.10 

1600 0.025 0.94 0.95 0.96 0.97 1.00 1.01 

2500 0.02 0.89 0.90 0.91 0.93 0.94 0.97 

3600 

0.017 

0.79 0.79 0.79 0.81 0.83 0.84 

No. of electrons, n 1.96 2.01 2.05 2.11 2.13 2.24 

 

 



 80 

This observation would suggest, then that the ORR activity of the PdAg system under 

consideration in alkaline media would be driven primarily by the composition of the alloy and 

not necessarily by the presence of a cavity resulting from the galvanic process, presenting 

additional surface area.  Moreover, the addition of a high Pd concentration would most likely 

envelop the Ag cubes and reduce access to the core, based on Skrabalak et al. [131] Thus, a 

thinner shell  (or smaller Pd concentration) should result in a more efficient process. Indeed, 

when the shell size was reduced to 6nm, or smaller deposits of Pd were employed, the number of 

obscured Ag sites would reduce, and an improvement in the apparent pathway was observed. As 

the results of the Koutecky-Levich analysis revealed, the thinner Pd shell resulted in a higher 

average electron number recorded. While the average electron number for the PdAg10 shell was 

2.08, the average electron number for the PdAg6 film was 3.49 suggesting that the 2-electron 

process was still significant with PdAg6 being more efficient at the direct oxygen reduction 

process.  A comparison of the electron numbers from the Koutecky-Levich analysis was made 

with recent literature [130] values and this revealed that the values corresponded closely with 

numbers recorded for bulk Ag. However since the OH binding energies for Pd and Ag are so 

close, [31] it is presumed that the comparison would hold for PdAg systems as well. 

5.3.2 Pd-based DEN Systems 

Like with the PdAg nanocage systems, it is believed that the resulting pattern in the ORR 

curve was due in part to the quality of the deposited film. In general, aqueous systems made for 

more stable depositions while organic- and DEN based depositions were less stable. This lack in 

stability translated to a reduction in the influence of mass transportation limitations in the 

diffusion limiting current region of the ORR curves. Still an interesting trend was observed in the 

change in CV pattern before and after the ORR studies. When Pd combined with an equivalent 
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mole ratio of Ni, the observed cyclic voltammogram was more, well defined (see figure 41).   

The delayed hydrogen peak was suggestive of the combination of Pd with another material, in 

this case, Ni. In a similar composition involving sub-10nm bimetallic nanoparticles of Pd and 

Ag, the trend was different.  Features of the CV voltammogram were much less distinct in the 

ECSA observed, as is suggested by the differences in the CV voltammograms for the PdAg11 

system before and after the ORR studies. Indeed, the trend here would seem to suggest that 

bimetallic nanoparticle pairs with lower combined binding energies for oxygen reduction. 

Indeed, Koutecky-Levich analyses of the two bimetallic systems revealed that PdNi11 was much 

more efficient at facilitating the 4-electron oxygen reduction reaction pathway, with an average 

electron number calculated to be 4.24. In the case of PdAg11 however, the average number of 

electrons calculated was well out of range suggesting perhaps that an alkaline environment, like 

in the case of the PdAg nanocage system, would be a better avenue to capture the associated 

oxygen reduction reaction kinetics. 

5.4 Conclusions 

 

 The results, though inconclusive, suggest that in acidic media, CV features due to Pd 

were prominent. In alkaline conditions, better ORR kinetics were observed with average 

electrons numbers in agreement with literature. De-alloying limited the potential of additional 

surface area that could promote accelerated ORR kinetics. While, n values corroborated bulk Ag 

estimates, from literature, similar Pd and Ag binding energies would require a deeper 

examination to de-convolute contributions from either material. Equimolar DEN PdAg and PdNi 

NPs were evaluated for ORR activity in acidic media. While PdAg system results suggested 

similities to PdAg nanocages, PdNi system was more efficient at facilitating the 4-electron 

oxygen reduction reaction pathway with an average n value of 4.24 and excellent CV features. 
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Figure 39 Oxygen Reduction Reaction curves for PdAg6 in alkaline media at different rotation speeds. The scans were recorded at a 

scan rate of 10mV/s and a step size of 2mV. 
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Figure 40 Koutecky-Levich Plot for AgPd6 Nanocages in alkaline media. 
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Table 8 Summary of Koutecky-Levich Parameters (PdAg6) in alkaline media 

 

PdAg6-ALKALINE iL
-1

(V), (mAcm
-2

) 

ω, rpm 1/ω
0.5

 -0.75v -0.70v -0.65v -0.60v -0.55v -0.50v 

100 0.1 1.21 1.32 1.31 1.39 1.36 1.38 

400 0.05 0.95 0.96 0.96 1.00 1.01 1.02 

900 

0.033 

0.83 0.84 0.85 0.88 0.88 0.89 

1600 0.025 0.76 0.77 0.78 0.81 0.81 0.82 

2500 0.02 0.71 0.72 0.74 0.76 0.76 0.78 

3600 

0.017 

0.68 0.70 0.71 0.72 0.74 0.76 

No. of electrons, n 3.45 3.51 3.69 3.34 3.44 3.54 
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Figure 41 Stability test of PdNi11 sub-10nm bimetallic DENs in acidic media showing the change in current density / reduction in 

ECSA as a function of time.  
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Figure 42 Stability test of PdAg11 sub-10nm bimetallic DENs in acidic media showing the change in current density / reduction in 

ECSA as a function of time.  
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Figure 43 Oxygen Reduction Reaction curves for PdNi11 DENs in acidic media at different rotation speeds. The scans  

were recorded at a scan rate of 10mV/s and a step size of 2mV. 
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Figure 44 Oxygen Reduction Reaction curves for PdAg11 DENs in acidic media at different rotation speeds. The scans were recorded 

at a scan rate of 10mV/s and a step size of 2mV. 
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Table 9 Summary of Koutecky-Levich Parameters (PdNi11 DEN) in acidic media 

 

PdNi11 iL
-1

(V), (mAcm
-2

) 

ω, rpm 1/ω
0.5

 0.05v 0.10v 0.15v 0.20v 0.25v 0.30v 

100 0.1 3.86 4.03 4.26 4.52 4.88 5.43 

400 0.05 3.50 3.69 3.92 4.22 4.61 5.21 

900 

0.033 

3.34 3.55 3.79 4.10 4.50 5.13 

1600 0.025 3.25 3.45 3.69 4.00 4.42 5.10 

2500 0.02 3.18 3.39 3.64 3.97 4.41 5.10 

3600 

0.017 

3.06 3.23 3.40 3.72 4.17 4.85 

No. of electrons, n 3.36 3.54 3.40 4.02 4.69 6.42 
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Table 10 Summary of Koutecky-Levich Parameters (PdAg11 DEN) in acidic media 

 

PdAg11 iL
-1

(V), (mAcm
-2

) 

ω, rpm 1/ω
0.5

 0.05v 0.10v 0.15v 0.20v 0.25v 0.30v 

100 0.1 3.00 3.50 4.07 4.59 5.26 7.37 

400 0.05 2.95 3.47 4.00 4.55 5.26 6.41 

900 

0.033 

2.92 3.45 4.00 4.55 5.29 6.41 

1600 0.025 2.91 3.44 4.00 4.57 5.32 6.45 

2500 0.02 2.91 3.44 4.00 4.57 5.32 5.10 

3600 

0.017 

2.88 3.41 4.00 4.55 5.21 6.21 

No. of electrons, n 22.07 35.72 14.42 89.66 -39.80 3.83 
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Figure 45 Koutecky-Levich Plot for PdNi11 DENs in acidic media. 
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Figure 46 Koutecky-Levich Plot for PdAg11 DENs in acidic media. 
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CHAPTER 6:  PROPOSED FUTURE WORK 

 

 

6.1 Syntheses and Study of Additional Shapes  

 

 The synthesis and electrocatalytic study of additional shapes is an area, which holds 

tremendous promise for the future of this work. As novel approaches to generating new 

morphologies and composition of catalysts become evident, so will our understanding of NP 

shape-based electrocatalysis. Particularly, the ability to tailor monometallic shapes, driven by 

kinetic factors such as the concentration of composition elements as well as reaction time and 

temperature [34, 132-137] will continue to be of significant interest since many more shapes are 

yet to be studied. Bimetallic [43, 46, 138-145] and now trimetallic [146-151] compositions are 

also becoming increasingly popular. 

 The challenge though will be to harmonize variables including composition, shape and 

size into a geometry that is favorable to ORR catalysis. Thus, it may be possible to reproduce or 

surpass the intrinsic electrocatalytic activity of Pt.  However, the approach will continue to be 

guided by how geometric and ligand effects affect the resulting geometry, which can – at least in 

theory - be predicted by DFT modeling as a means of screening new potential catalysts. 

6.2 In-situ FTIR Electrochemical Cell Modification 

 

 One of the missing components of the current work is the ability to make transient 

measurements within the electrochemical reactor. Among other things, this added capability 

would compliment CV, ORR and activity data by describing how these vary with respect to other 
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factors such as the rate of ECSA loss, etc. In-situ electrocatalysis is a growing approach to 

informing more accurately the transient analysis of electrocatalytic systems [46, 152-159] 

 The current electrocatalytic system will be well enhanced through modifications that can 

enable in-situ experiments which for example, look at the concentration profile of electrocatalyst 

material on the surface of the GCE, or an evaluation of the GCE: electrocatalyst: Nafion system 

and through electron imagery and surface scanning. 

6.3 Life Cycle Assessment Modeling (Sima Pro) 

 

 One of the main arguments behind the use of PEMFCs is the fact that it reduces the 

amount of emissions with this form of automotive technology relative to other technologies such 

as ICEs and the like. However, as discussed earlier, the scarcity of commercial quantities of 

readily available H2 (g) for use in PEMFC means that H2 (g) would have to be produced from 

auxiliary processes, which may or may not be as clean. Indeed, recognized processes for the 

generation of H2 (g) include the steam reforming of CH4 coupled with a water gas shift reaction 

to enhance the formation of more H2 (g). Inherently, this process results in the generation of 

CO2, which is a greenhouse gas.  

 It is possible to capture the entirety of all processes affiliated with the generation of a new 

product through the use of LCA tools and software. These instruments play an essential role in 

determining what the resulting environmental impact of a particular process is. They also 

represent an important step in the elucidation of the most efficient pathway for a particular 

process. The evaluation process may start from the extraction of raw products through their 

transportation, assembly and use through to their disposal.  

 An LCA analysis of PEMFCs, which employ various quantities of Pd- and Pd based 

catalysts, will make an argument for the commercial viability of the said PEMFCs. Furthermore, 
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juxtaposing the LCA evaluation of Pd catalyst based PEMFCs with that of other technologies 

such as ICEs, etc. will present a more realistic perspective of the “clean” credentials of this 

technology. 

6.4 COMSOL Modeling 

 

COMSOL  is a finite element-modeling package that can account for the transport; heat 

and mass transfer and the kinetics of a given system.  Three subdomains, corresponding to the 

three phenomena mentioned above, can be accurately modeled independently or coupled to 

describe a steady state or transient system. A number of COMSOL-related papers have focused 

on macro modeling [160-162], i.e. looking at phenomena on the level of the entire fuel cell or 

fuel cell component. A growing number of papers are starting to look at micro modeling [163], 

i.e. discrete aspects of PEMFC modeling. An example of particular interest is highlighted in the 

work presented by Cetinbas et al [164]. In this work, the authors studied the properties of 

discrete Pt NPs supported discretely on a carbon support and enveloped in an ionomer matrix. 

The results of this work hold relevance within the actual fuel cell but also at the bench scale. 

A similar system can be envisaged for some of the different shapes and compositions of 

Pd and Pd-based NPs that we have synthesized. Variables such as particle size and shape can be 

varied to determine preliminary trends that evolve exclusively based on the varied parameter. 

This will inform experimental results by allowing us to isolate effects that are based on the 

studied variables and others that may be due to error or otherwise. 
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Appendix A List of Abbreviations and Chemical Formulae 

 

Ag ...................Silver 

Ar ...................Argon 

Au ...................Gold 

Aq ...................Aqueous 

CTAB .............Cetyl Trimethylammonium Bromide 

CV ..................Cyclic Voltammetry 

Cu ...................Copper 

DEN ...............Dendrimer-Encapsulated metal Nanoparticle 

DI ...................De-ionized Water 

DLR................Double Layer Region 

ECSA .............Electrochemical Surface Area 

EXAFS ...........Extended X-Ray Absorption Fine Structure 

FC ...................Fuel Cell 

FIJI .................Fiji is just ImageJ 

GC ..................Gas Chromatrography 

GCE................Glassy Carbon Electrode 

HClO4 .............Perchloric Acid 

HER................Hydrogen Evolution Region 

H2PtCl6 ...........Hexachloroplatinic Acid 

ICE .................Internal Combustion Engine 

K2PdCl4 ..........Potassium Tetrachloropalladate (II) 

K2PtCl4 ...........Potassium Tetrachloroplatinate (II) 

K2PdCl6 ..........Potassium Hexachloropalladate (IV) 

K2PtCl6 ...........Potassium Hexachloroplatinate (IV) 

LSV ................Linear Sweep Voltammetry 

Mo ..................Molybdenum 

MS ..................Mass Spectroscopy 

MW ................Molecular Weight 

Ni....................Nickel 

NIH ................National Institute of Health 

NP(s) ..............Nanoparticle(s) 

OER................Oxygen Evolution Region 

ORR ...............Oxygen Reduction Reaction 

PAMAM-OH .Hydroxyl-terminated Polyamidoamine dendrimer 

PEMFC ..........Polymer Electrolyte Membrane Fuel Cell 

Pd ...................Palladium 

Pt ....................Platinum 

PVP ................Polyvinyl Pyrrolidone 

RE ..................Reference Electrode 

RPM/rpm........Revolutions per minute 

Ru            ........Ruthenium 
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Appendix A (Continued) 
 

SCE ................Saturated Calomel Electrode 

SiO2 ................Silicon Dioxide 

TEM ...............Transmission Electron Microscopy 

TPO ................Temperature-Programmed Oxidation 

VC ..................Vulcan Carbon 

XAS................X-Ray Absorption Spectroscopy 

XRD ...............X-Ray Diffraction 

W ....................Tungsten 
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Appendix B Permission for Use of Material in Chapter 3 

 

B.1 ASTM International 
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Appendix B (Continued) 
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Appendix B (Continued) 
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Appendix C Instruments Used 

 

 
 

Figure C-1 Suite of GAMRY Instruments ® used to generate Cyclic Voltammetry and Linear 

sweep Voltammetry data.  Included are (R – L): RDE710 Rotator, Reference 600 Potentiostat, 

Reference 3000 Potentiostat, Electrochemical Set-up including rotating working electrode in 

electrochemical reactor cell. 
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Appendix C (Continued) 

 

 
Figure C-2 Electrochemical Cell (Reactor) 

 

 

 
Figure C-3 Working Electrode Assembly 
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Appendix C (Continued) 

 
Figure C-4 Electrochemical System in Bi-Potentiostat mode 

 

 

 

Figure C-5 Perkin Elmer (Gas Chromatograph) Set-Up 
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Appendix C (Continued) 

 

                                        
Figure C-6 Quantachrome Autosorb IQ 
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Appendix D Calculating ECSA  

 

A recorded CV set is saved and stored in the My Gamry Data Folder. From EChem 

analyst, it can be opened to look like the screen shot below.  

 
Figure D-1 EChem Analyst Screenshot of a series of Cyclic Voltammograms 

 

 

From here, a single CV can be chosen for further analysis. 

 

 
Figure D-2 EChem Analyst Screenshot of a single Cyclic Voltammogram with highlighted 

Hydrogen Evolution Region 
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Appendix D (Continued) 

 Using the keyboard tab, the desired span of the curve to integrate over can be chosen (see 

blue line above). To avoid over estimating, a line is used to designate the vertical limit / 

boundary of the integral. 

 
Figure D-3 EChem Analyst Screenshot of a single Cyclic Voltammogram with computationally 

integrated Hydrogen Evolution Region 

 

 

  The intersection of the curve and the line, establish the area of interest to integrate over. 

Under the Cyclic Voltammetry tab, the “integrate” button is chosen: This integration is 

performed using 0.0A as the vertical limit for the integration. Clicking on the “regional basis” 

tab under the cyclic voltammetry drop-down menu, restricts the integration region to the curve 

and line chose, and produces a result, which is printed on the screen. The coulombic charge 

associated with one monolayer of H2 atoms on a Pd surface is 212μC/cm
2
. Using this value, the 

coulombic charge calculated can be converted to surface area, i.e. electrochemically active 

surface area. The same procedure can be repeated to integrate over the oxide peak as well, as was 

done for comparison in this document. 
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Appendix D (Continued) 

 
Figure D-4 EChem Analyst Screenshot of a single Cyclic Voltammogram with computationally 

integrated Hydrogen Evolution and Oxygen reduction peaks 

 

 

 



 124 

 

 

 

 

 

ABOUT THE AUTHOR 

 

 

 Selasi Blavo is a currently a Doctoral Candidate in the Heterogeneous Catalysis and 

Materials Chemistry group of the Chemical and Biomedical Engineering of the University of 

South Florida, USF. Prior to USF, Selasi completed an. M.S. in Chemical Engineering at the 

University of Pittsburgh. Before that he earned Bachelor of Science Degrees in Chemistry and 

Chemical Engineering from Clark Atlanta University. His research interest is focused on the 

study of alternative energy technologies applications of heterogeneous catalysis, particularly in 

the area of PEM Fuel Cells Catalysis. However he has a broader interest in alternative energy 

research in general. 

 

 

 


	University of South Florida
	Scholar Commons
	January 2013

	Model Pt- and Pd-based Electrocatalysts for Low Temperature Fuel Cells Applications
	Selasi Ofoe Blavo
	Scholar Commons Citation


	tmp.1378316186.pdf.aHZs1

